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ABSTRACT. Given a 4-dimensional manifold M, together with an n-component link ℓ : S1,n ↪→
∂M, for which each component is equipped with an embedded geometric dual sphere, we give a
classification of isotopy classes of slice multi-disks by studying the homotopy type of the embed-
ding space Embℓ(D2,n, M).
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I. INTRODUCTION

The higher dimensional analogue to classical knot theory is the study of knotted surfaces in 4-
manifolds. Using Casson handles (later skyscrapers in the work with Quinn) and the presence
of algebraic dual spheres, Freedman constructed topological embeddings of surfaces into 4-
manifolds and determined their topological isotopy classes in some cases. His construction is
entirely topological, and for many years the question about analogous results in the smooth
category was completely open. Gabai’s Light Bulb Theorem in dimension 4, see [Gab20], was
a major result into the insight of isotopy classes of surfaces in 4-manifolds. Two homotopic
2-spheres in a 4-manifold such that π1(M) has no elements of order 2, that share a common
geometric dual sphere, are already isotopic. It has been known for a while that, without a
common dual sphere, such results fail. In [ST22], Schneiderman and Teichner extended Gabai’s
Light Bulb Theorem to arbitrary fundamental groups. As a corollary, they showed that two
homotopic 2-spheres in a 4-manifold, sharing a common geometric dual sphere, are isotopic if
and only if their Freedman-Quinn invariant vanishes.

I.1. STRUCTURE AND STATEMENT OF THE RESULTS

We present the structure and main results, encouraging the reader to come back to this section
every now and then, to take a break from the technicalities and maintain an overview of the
content. This work is heavily inspired, motivated by and built upon the work of Kosanović
and Teichner in [KT23b] and [KT23a], and is extending some of the results to the setting of
multi-disks.

Let M be a d-dimensional, compact, oriented, connected manifold with non-empty boundary
∂M. Consider an n-component link ℓ : Sk−1,n ↪→ ∂M such that every component ℓi : Sk−1 ↪→
∂M has its own framed geometric dual Gi : Sd−k ↪→ ∂M. This means that ℓi ⋔ Gi = pt and Gi

has trivialised normal bundle. Furthermore, we require that ℓi ∩ Gj = ∅ and Gi ∩ Gj = ∅ for
i ̸= j. Considering all components together, we say that the link G : Sd−k,n ↪→ ∂M is a framed
geometric dual link to ℓ and we are in the setting with a dual. Note that this setting is rather
restrictive. In fact, the existence of such a link ℓ together with a framed geometric dual link G
implies that ∂M ∼= #n

i=1(S
k−1 × Sd−k)#W for some closed, oriented (d − 1)-manifold W. This

can be seen via the attaching map of the (d− 1)-cell on the transverse wedge Sk−1 ∨⋔ Sd−k in the
boundary of M. Here, the fact that each dual sphere is framed is crucial. Notice that W need
not be connected and hence the information on which path-component to form the connected
sum on is important, but usually suppressed in favour of less cluttered notation.

We will later focus on the case of a link ℓ : S1,n ↪→ ∂M where M is of dimension 4. In this
case, the geometric dual link G : S2,n ↪→ ∂M automatically has trivial normal bundle since
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every real line bundle, classified by H1(−; Z/2), over the sphere S2 is trivial. In this case, a
Heegaard diagram of ∂M yields another point of view on why ∂M must contain connected
sums of S1 × S2.

The object of interest is the set of isotopy classes of multi-disks Dk,n ↪→ M that agree with the
n-component link ℓ on the boundary. Our approach is to study the homotopy type of the entire
embedding space Embℓ(D

k,n, M). Elements in this space are precisely embeddings Dk,n ↪→ M
that agree with ℓ on the boundary.

In Section II, we begin with a short discussion on manifolds with corners, stating well-known
results which are serving as key inputs. After introducing important embedding spaces, we
give a proof of the following theorem which is an essential ingredient in the theory.

Theorem A. Let M be a d-dimensional, compact, oriented manifold with non-empty boundary ∂M and
ℓ : Sk−1,n ↪→ ∂M an n-component link with a framed dual link G : Sd−k,n ↪→ ∂M. Any choice of a
basepoint U ∈ Embℓε(Dk,n, M) leads to an inverse pair of homotopy equivalences

Embℓε(Dk,n, M) Ω Embε
u0
(Dk−1,n, MG).

fεU

aU

The embedding spaces in question are defined in Section II. In particular, the embedding
spaces Embℓ(D

k,n, M) and Embℓε(Dk,n, M) are weakly equivalent. Note that the existence of
the basepoint U implies that the embedding space Embℓ(D

k,n, M) is non-empty to begin with.
Of course, it is an interesting question itself to ask when this embedding space is non-empty,
which is the question about sliceness of the link ℓ in the d-manifold M. In the setting with a
dual link and the dimensional restriction d ≥ 2k, this is exactly the case if and only if ℓi is null-
homotopic in M, see Proposition 12 for a discussion. The notable point of the above theorem
is that, in the presence of dual spheres, the homotopy type of the embedding space of interest
can be understood by studying the homotopy type of another embedding space with increased
codimension.

We then turn our attention towards the special case of links ℓ : S1,n ↪→ ∂M in the boundary of a
4-manifold M. By the previous reduction, we study the homotopy type of the embedding space
Emb∂(D

1,n, M) of arcs in the 4-manifold M. In Section III, we introduce and alter the work by
Dax on comparing the homotopy type of embedding spaces to that of immersion spaces. This
leads to a geometric Dax isomorphism Dax, together with an explicit inverse r.

π2(Imm∂(D
1,n, M), Emb∂(D

1,n, M), u) Z[Tn × π1(M)]
Dax

r

We further discuss the homotopy type of immersion spaces via Hirsch-Smale theory in IV. This
leads to the following theorem.
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Theorem B. Let M be 4-dimensional, compact, oriented, connected manifold with non-empty boundary
∂M. For a whiskered embedding u as a basepoint, there is a central group extension

Z[π1(M)†,n]/im(daxu) π1(Emb∂(D
1,n, M), u) ∏n

i=1 π2(M).
∂r

Dax

This identifies the subgroup πD
1 (Emb∂(D

1,n, M), u) ⩽ π1(Emb∂(D
1,n, M), u) of loops of em-

beddings that are null-homotopic in the mapping space Map∂(D
1,n, M) with the abelian group

Z[π1(M)†,n]/im(daxu).

A phenomenon this sequence detects is the following. Given any such 4-manifold M, in the
case of n = 1, every homotopy class of loops of neat embeddings D1 ↪→ M contains exactly
one isotopy class. Already in the case of n = 2, each such homotopy class contains countably
many different isotopy classes. These can be realised by the restricted realisation map ∂r as
introduced in Section III.

After a discussion on forgetting the ε-augmentation in the beginning of Section V, we then
tie up loose ends to obtain the following theorem which can be thought of as the main result
regarding the classification of isotopy classes of multi-disks in 4-manifolds in the presence of a
geometric dual link.

Theorem C. Let M be 4-dimensional, compact, oriented, connected manifold with non-empty boundary
∂M. In the setting with a geometric dual link, there is a short exact sequence of sets

Z[π1(MG)
†,n]/daxu(MG) π0(Embℓ(D

2,n, M), U) Zn ×∏n
i=1 π2(MG).

∂r

Dax

This result can be thought of as a combination of Theorem A and Theorem B.

I.2. NOTATION AND CONVENTIONS

If not stated otherwise, we always assume manifolds to come equipped with a smooth struc-
ture, and maps between manifolds are assumed to be smooth. Furthermore, loop spaces ΩX
are based. Given two smooth manifolds M and N, Emb(M, N) denotes the space of smooth
embeddings viewed as a subspace of the smooth mapping space C∞(M, N) equipped with the
Whitney C∞-topology. Similarly, the immersion space Imm(M, N) comes equipped with the
Whitney C∞-topology. The original definition of the Whitney C∞-topology comes in the form
of convergence of partial derivatives on compact sets. This is most effectively described as a
subspace of the space of sections of jet bundles. The standard reference is [GG73, Chapter 2,
Section 3], [Hir76, Chapter 2], or [Mic80, Chapter 1, Chapter 4]. Immersions are assumed to be
generic, that is, a smooth map with only finitely many points of transverse intersection.

− Sk denotes the k-dimensional sphere, Sk,n := ⨿n
i=1 Sk the n-component disjoint union of

k-spheres, also called a multi-sphere.
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− Dk denotes the k-dimensional disk, Dk,n := ⨿n
i=1 Dk the n-component disjoint union of

k-disks, also called a multi-disk.

− An n-component link ℓ of k-spheres in a smooth manifold X is a smooth embedding ℓ :
Sk,n ↪→ X.

− Emb∂(X, Y) denotes the space of neat embeddings from a smooth ℓ-manifold X with bound-
ary into a smooth d-manifold Y with boundary. A smooth map f : X → Y is neat if it is
transverse to ∂Y and f−1(∂Y) = ∂X. Sometimes the boundary condition might change, but
embeddings with a boundary condition are generally understood to be neat, except in the
case of multi-half-disks. For an explicit definition, see Definition 3.

− Dk denotes a k-dimensional half-disk as defined in Definition 8, Dk,n := ⨿n
i=1 Dk the n-

component disjoint union of k-dimensional half-disks, also called a multi-half-disk.

− I denotes the standard closed interval.

Concatenation (for example of paths) is denoted by · and reads from “left to right”, whereas
usual composition is denoted by ◦ and reads from “right to left”.
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II. ON EMBEDDINGS OF MULTI-DISKS AND MULTI-HALF-DISKS

II.1. EMBEDDINGS OF MANIFOLDS WITH CORNERS

In this section, we will review the necessary background on manifolds with corners. Restriction
maps of embeddings are discussed, which will serve as a major tool for obtaining fibration
sequences. For a careful introduction to manifolds with corners, we refer the reader to [Mic80,
Chapter 2].

Definition 1. A d-manifold with corners consists of the following data.

− A topological space X which is Hausdorff and second countable.

− A collection {Ux, φx}x∈X with Ux ⊆ X an open neighbourhood of x, and Diff-compatible
charts φx : Ux −→ Rd

(q) := Rq × [0, ∞)d−q for some 0 ≤ q ≤ d, centred around x.

The charts being Diff-compatible means that every transition map defined on an open subset
of Rd

(q) extends to a smooth map on an open subset of Rd. This allows us to endow the set
C∞(Y, X) of smooth maps between manifolds with corners with the Whitney C∞-topology. An
embedding E : Y ↪→ X of manifolds with corners is a smooth map such that E (Y) is a sub-
manifold of X, and the induced corner structure makes the map E a diffeomorphism onto its
image. An immersion of manifolds with corners is a smooth map that is locally an embedding.
Spaces of embeddings Emb(Y, X) and immersions Imm(Y, X) are subspaces of C∞(Y, X) and
similarly carry the Whitney C∞-topology.

The connected components of X(q) := {x ∈ X : x ←→ 0 ∈ Rd
(q) in some chart} are called

q-faces of X. Each q-face is a smooth submanifold of dimension q that has empty boundary.
In Definition 1 above, the case q = d corresponds to charts around points in the interior of the
manifold X, while the case q = d− 1 corresponds to charts around points in the smooth boundary
∂sX of X. Furthermore, the closure of X(d) is the manifold X itself, the closure of X(d−1) is the
whole boundary ∂X. Generally, we can decompose ∂X = ∂sX ∪ cX where cX denotes the set of
corners of X.

Example 2. Let M and N be two regular manifolds with non-empty boundary. Then M × N
is a manifold with corners. Namely, ∂(M × N) = (∂M × N) ∪ (M × ∂N) and c(M × N) =

∂M× ∂N.

Turning our attention back to embeddings, we will now carefully define embeddings with
boundary conditions for manifolds with corners. Specifically, we say that two embeddings
E1 : Y ↪→ X and E2 : Y ↪→ X of manifolds with corners have the same incidence relations if for
each point p ∈ Y, and each face FX ⊆ X, we have E1(p) ∈ FX if and only if E2(p) ∈ FX. This
means that there is a consistent choice of which faces of Y get mapped to which faces of X. For
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example, in the case of manifolds with boundary, and the set of corners being empty, this could
mean that boundary gets mapped to boundary.

Definition 3. Let Y and X be manifolds with corners, and fix an embedding y : Y ↪→ X. In
particular, the embedding space Emb(Y, X) is non-empty. Consider the subspace

Emb(Y, X; y) ⊆ Emb(Y, X)

consisting of embeddings E : Y ↪→ X such that E has the same incidence relations as y. For a
closed subset Y′ ⊆ Y, the subspace

EmbY′(Y, X; y) ⊆ Emb(Y, X; y)

is the space of such embeddings that agree with y on Y′. In that case, we call y the boundary
condition along Y′.

With the definition at hand, usual manifolds with boundary are considered to be manifolds
with corners. Let X, and Y ⊇ Z ⊇ Z′, be compact manifolds with corners, and consider
embeddings

Z′ Z Y Xi

z=y◦i

y

with i : Z ↪→ Y being the chosen inclusion. Following the discussion given in [KT23b, Sec-
tion 2.2.1], we call a subset Y′ ⊆ Y a local normal tube to Z ⊆ Y along Z′, if Y′ ∩ Z = Z′ and
there exists a tubular neighbourhood V ⊆ Y of Z in Y such that Y′ ∩ V = proj−1(Z′) with the
canonical projection map proj : V −→ Z.

Theorem 4 ([Cer61, p. 294, p. 298]). In the setting as described above, the following restriction maps

− evZ : Emb(Y, X; y) −→ Emb(Z, X; z)

− evZ : EmbY′(Y, X; y) −→ EmbZ′(Z, X; z)

are locally trivial.

Locally trivial maps over paracompact Hausdorff spaces are Hurewicz fibrations, a result known
as the Hurewicz-Huebsch theorem on local-to-global Hurewicz fibrations, see for example
[Hue55]. Embedding spaces are paracompact as metrisable spaces and hence the locally trivial
maps evZ in Cerf’s theorem are, in fact, Hurewicz fibrations. See Remark 11 for further com-
ments on the topological properties of embedding spaces. The above theorem can be seen as
a family version of the classical ambient isotopy theorem which is obtained by the induced
surjection on π0. More concretely, the fact that it is a Hurewicz fibration yields a lift in the
following diagram.

EmbY′(Y, X; y) EmbZ′(Z, X; z)

{0} I

evZ
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Proposition 5 ([Cer61, p. 331 , p. 337]). If Z′ = Y′ ∩ Z is the closure of a codimension 1 face, then
the inclusion EmbZ∪Y′(Y, X; y) ↪→ EmbZ(Y, X; y) is a weak homotopy equivalence.

Let us briefly discuss the ideas and results that go into proving Theorem 4. The key ingredient
requires a discussion on G-equivariant maps. For a topological group G and a space X with a
continuous G-action G ↷ X, we say that X admits a local G-section at a point x ∈ X if the orbit
map sending a group element g ∈ G to g.x in the orbit of x has a local section at x. That is,
there exists a neighbourhood U ∋ x and a map sU : U −→ G such that s(u).x = u for all u ∈ U.
The first key result is the following lemma, sometimes called the Cerf-Palais fibration criterion,
which appeared independently in [Cer61, p. 240] and [Pal60, Theorem A].

Lemma 6 (Cerf-Palais fibration criterion). If p : E −→ X is a G-equivariant map and X admits local
G-sections at all points, then p is a locally trivial map.

Sketch of the proof. One can simply choose a local trivialisation from U × p−1(x) to p−1(U) by
sending (u, v) to sU(u).v. □

As we are considering embedding spaces, the natural action is given by post-composition with
elements in the diffeomorphism group Diff(X) for the first case in Theorem 4. For the second
case, one considers the group Diffz(Z′)(X) of diffeomorphisms that restrict to the identity on
z(Z′). The evaluation maps evZ are evidently Diff(X)- and Diffz(Z′)(X)-equivariant. Focusing
on the second case, the second key ingredient is given by the following theorem, which first
appeared in [Cer61, p. 293].

Theorem 7 (Parametrised Isotopy Extension Theorem). The embedding space EmbZ′(Z, X; z) ad-
mits local Diffz(Z′)(X)-sections at all points.

Theorem 4 then follows immediately from Lemma 6 and Theorem 7.

II.2. MULTI-HALF-DISKS AND IMPORTANT EMBEDDING SPACES

We will now focus on an important class of manifolds with corners, namely multi-half-disks.
These spaces have faces of codimension 0, the interior, 1, the boundary, and 2, the corners. In
the following, we set k ≥ 2.

Definition 8. We call the space Dk := {x ∈ Rk : ∥x∥ ≤ 1, x1 ≤ 0} a half-disk of dimension k, and
the n-fold disjoint union Dk,n := ⨿n

i=1 Dk a multi-half-disk of dimension k. We define the following
important subspaces.

− Dk−1
− := {x ∈ Dk : ∥x∥ = 1} is the outer boundary component of the half-disk, and D

k−1,n
− :=

⨿n
i=1 Dk−1

− ⊆ Dk,n is the outer boundary component of the multi-half-disk.

− D
ε,k−1
− := {x ∈ Dk : ∥x∥ ≥ 1− ε} is the outer boundary ε-neighbourhood of the half-disk, and

D
ε,k−1,n
− := ⨿n

i=1 D
ε,k−1
− ⊆ Dk,n is the outer boundary ε-neighbourhood of the multi-half-

disk.
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− Dk−1
+ := {x ∈ Dk : x1 = 0} is the inner boundary component of the half-disk, and D

k−1,n
+ :=

⨿n
i=1 Dk−1

+ ⊆ Dk,n is the inner boundary component of the multi-half-disk.

− D
ε,k−1
+ := {x ∈ Dk : x1 ≥ −ε} is the inner boundary ε-neighbourhood of the half-disk, and

D
ε,k−1,n
+ := ⨿n

i=1 D
ε,k−1
+ ⊆ Dk,n is the inner boundary ε-neighbourhood of the multi-half-

disk.

Furthermore, we denote by Sk−2
0 = Dk−1

− ∩Dk−1
+ the unique corner of the half-disk, and the

n-fold disjoint union S
k−2,n
0 := ⨿n

i=1 Sk−2
0 ⊆ Dk,n are the n corners of the multi-half-disk. The

union D
ε,k−1,n
− ∪D

ε,k−1,n
+ =: ∂ε Dk,n is called the prismatic collar.

Note that the multi-half-disk Dk,n is indeed a manifold with corners. There are exactly n k-faces,
given by the interior ˙ Dk,n, 2n (k− 1)-faces, given by Ḋ

k−1,n
− and Ḋ

k−1,n
+ . Last but not least, there

are n (k− 2)-faces given by the corners of Dk,n, namely S
k−2,n
0 .

Sk−2
0

D
ε,k−1
+

D
ε,k−1
−

FIGURE 1. A half-disk Dk, separated into its faces, together with ε-neighbourhoods.

Important embedding spaces. We will now define various embedding spaces which are cru-
cial for the upcoming section. Let V be a compact manifold with corners and U : V ↪→ X a
chosen fixed neat embedding, acting as the basepoint. Suppose V and X both have non-empty
boundary. Then define the boundary condition ℓ := U|∂V : ∂V ↪→ ∂X and

Embℓ(V, X) := Emb∂V(V, X; U)

as the usual embedding space of neat embeddings E : V ↪→ X agreeing with the basepoint U
on the boundary. Thus for any such embedding E , we have E |∂V = ℓ. Expanding the boundary
condition ℓ on ∂V to a closed collar neighbourhood ∂V × [0, ε] yields the boundary condition
ℓε := U|∂V×[0,ε]. The corresponding embedding space

Embℓε(V, X) := Emb∂V×[0,ε](V, X; U)

consists of neat embeddings E : V ↪→ X agreeing with U on the collar ∂V × [0, ε]. Hence,
E |∂V×[0,ε] = ℓε.

Lemma 9. The inclusion Embℓε(V, X) ↪→ Embℓ(V, X) is a weak homotopy equivalence.

Proof. We apply Proposition 5, choosing Z := ∂V =: Z′ and Y′ := ∂V × [0, ε]. This immediately
yields the result. □
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Note that none of the used results depend on connectedness of V. Therefore, we can easily
apply these results to our setting of embeddings of multi-disks into a manifold. The point is
that the embedding space Embℓε(V, X) allows us more control over how embeddings behave
near the boundary. This will be useful in the proof of Theorem 10.

Generally, we are interested in the homotopy type of the embedding space Embℓ(D
k,n, X) as

discussed in Section I. The first key ingredient, Theorem A, is phrased in terms of the homotopy
type of the embedding space Embℓε(Dk,n, X). Lemma 9 allows us to ignore this subtlety when
calculating homotopy groups.

In the special case of multi-half-disks Dk,n, we allow one part of the boundary of the disk to lie
in the interior of the target manifold X. Hence, we cannot assume embeddings to be neat in the
classical sense but the boundary condition ℓε still makes sense. The embedding space

Embℓε( Dk,n, X) := Emb∂ε Dk,n( Dk,n, X; U)

is the space of embeddings that agree with a fixed basepoint U : Dk,n ↪→ X on the prismatic
collar ∂ε Dk,n as defined in Definition 8. Note that U : Dk,n ↪→ X is understood to be neat on the
outer boundary component of the multi-half-disk. In preparation of the proof of Theorem 10,
we define the embedding space

Embu0(D
k−1,n, X) := Emb

S
k−2,n
0

(Dk−1,n
+ , X; u+)

to be the embedding space of embeddings Dk−1,n into X that agrees with U on S
k−2,n
0 , the n

corners of the multi-half-disk. The restriction U|
D

k−1,n
+

is denoted by u+. By Lemma 9, this is
weakly equivalent to the embedding space

Embuε
0
(Dk−1,n, X) := Emb

S
k−2,n
0 ×[0,ε](D

k−1,n
+ , X; u+)

of embeddings that agree with U on S
k−2,n
0 × [0, ε]. Last but not least, we require an embedding

space of embeddings E : Dk−1,n ↪→ X that comes with the data of a push-off neighbourhood.
Define the embedding space

Embε
uε

0
(Dk−1,n, X) := Emb

D
ε,k−1,n
− ∩D

ε,k−1,n
+

(Dε,k−1,n
+ , X; uε

+)

to be the space of embeddings E : Dk−1,n × [0, ε] ↪→ X that agree with U on D
ε,k−1,n
− ∩D

ε,k−1,n
+ .

The restriction U|
D

ε,k−1,n
+

is denoted by uε
+. We call elements in Embε

uε
0
(Dk−1,n, X) “ε-augmented”

multi-disks of dimension (k− 1).

II.3. COMPARING EMBEDDINGS OF MULTI-DISKS TO MULTI-HALF-DISKS

The goal of this section is to prove Theorem A. The proof is divided into two main parts and
is completely analogous to the proof provided by Kosanović and Teichner in [KT23b, The-
orem 3.2] for the case n = 1. The first ingredient is the following theorem. Note that this easily
can be furthermore generalised to the setting of embedding of disks of varying dimension k, as
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Embℓ(D
k,n, X) Embℓε(Dk,n, X) Embℓε( Dk,n, X)

Embu0(D
k−1,n, X) Embuε

0
(Dk−1,n, X) Embε

uε
0
(Dk−1,n, X)

FIGURE 2. The boundary conditions of the various embedding spaces for the case k = 2
and n = 1.

long as every bounding k− 1-sphere as a geometric dual sphere of dimension d− k. Since we
do not need this generalisation, we omit it for the sake of readability.

Theorem 10. For k, d, n ≥ 1, X a smooth d-manifold with non-empty boundary ∂X and a chosen
basepoint U : Dk,n ↪→ X of Embsε( Dk,n, X), there are inverse homotopy equivalences

Embℓε( Dk,n, X) Ω Embε
uε

0
(Dk−1,n, X).

fεU

aU

Proof. By Theorem 4, there is a fibration sequence

ev−1
D

ε,k−1,n
+

(uε
+) Emb

D
ε,k−1,n
−

( Dk,n, X; U) Embε
uε

0
(Dk−1,n, X)

ev
D

ε,k−1,n
+

by setting Y′ := D
ε,k−1,n
− ⊆ Dk,n =: Y and Z′ := D

ε,k−1,n
− ∩D

ε,k−1,n
+ ⊆ D

ε,k−1,n
+ =: Z. This is

sometimes called Cerf’s half-disk trick. We will now identify the fibre space, after which we
show that the total space is contractible. This will lead to a weak homotopy equivalence which
we can upgrade to obtain an honest homotopy equivalence, proving the claim. We consider an
element E ∈ Emb

D
ε,k−1,n
−

( Dk,n, X; U) which is an embedding E : Dk,n ↪→ X that agrees with the

embedding U : Dk,n ↪→ X on an ε-neighbourhood D
ε,k−1,n
− of the outer boundary D

k−1,n
− . The

evaluation map ev
D

ε,k−1,n
+

restricts this embedding to an ε-neighbourhood D
ε,k−1,n
+ of the inner

boundary D
k−1,n
+ . This now agrees with the embedding U on the intersection D

ε,k−1,n
− ∩D

ε,k−1,n
+ .

This is illustrated in Figure 3 below, for the case n = 1. This reduction is sufficient as everything
happens disjointedly.

Hence, considering the pre-image ev−1
D

ε,k−1,n
+

(uε
+) gives all embeddings that agree with U on

D
ε,k−1,n
− ∪D

ε,k−1,n
+ = ∂ε Dk,n. This is precisely the space Embℓε( Dk,n, X), giving the fibration
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∂X ∂X

E (Dε,k−1
+ ) E (Dε,k−1

+ )

E (Dε,k−1
− )

ev
D

ε,k−1
+−−−−→

FIGURE 3. The action of the evaluation map on an embedding E : Dk ↪→ X which agrees
with U on an ε-neighbourhood D

ε,k−1
− of the outer boundary.

sequence

Embℓε( Dk,n, X) Emb
D

ε,k−1,n
−

( Dk,n, X; U) Embε
uε

0
(Dk−1,n, X).

ev
D

ε,k−1,n
+

The claim is now that the total space Emb
D

ε,k−1,n
−

( Dk,n, X; U) is contractible. Morally, the idea
is to push a multi-half-disk radially into the neighbourhood on which it agrees with U. Then
push it out radially to obtain U. The first part can be done in the following way. Namely, let
φ : [ε, 1] −→ Emb

D
ε/2,k−1,n
−

( Dk,n, Dk,n; Id) be a path such that

− φ1 = Id,

− φε( Dk,n) ⊆ D
ε,k−1,n
− ,

− φt(D
ε,k−1,n
− ) ⊆ D

ε,k−1,n
− .

Note that the boundary condition on the embedding space means that we are fixing the multi-
half-disk on a smaller neighbourhood of the outer boundary component. As discussed before,
one should think about φ radially pushing the multi-half-disk into the ε/2-neighbourhood of
the outer boundary. As a path of embeddings, this defines an isotopy. Equipped with the newly
acquired isotopy, we obtain a homotopy

Emb
D

ε,k−1,n
−

( Dk,n, X; U)× [ε, 1] Emb
D

ε/2,k−1,n
−

( Dk,n, X; U)

given by pre-composition (E , t) 7→ E ◦ φt. For each element E ∈ Emb
D

ε,k−1,n
−

( Dk,n, X; U), this
amounts to a path from E itself to E ◦ φε = U ◦ φε, the latter given by the boundary condition.
Currently, we run into a small problem. The target embedding space is larger than the one
we want to define a retraction on. To circumvent this, we use the ambient isotopy theorem
to extend the just defined isotopy U ◦ φt to an ambient isotopy Φ : [ε, 1] −→ Embν∂(X, X)

supported in a neighbourhood of the boundary of X. For t ∈ [ε, 1], we define the first part of
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the retraction

R : Emb
D

ε,k−1,n
−

( Dk,n, X; U)× I Emb
D

ε,k−1,n
−

( Dk,n, X; U)

on elements as Rt(E ) := Φt ◦ E ◦ φt. For each multi-half-disk E : Dk,n ↪→ X, this is a path
in Emb

D
ε,k−1,n
−

( Dk,n, X; U), starting at Rε(E ) = Φε ◦ E ◦ φε = Φε ◦ U ◦ φε, as it agrees with U
in an ε-neighbourhood of the outer boundary, to R1(E ) = IdX ◦ E ◦ Id Dk,n . Since we have the
equality Rε(E ) = Rε(U) for any element E ∈ Emb

D
ε,k−1,n
−

( Dk,n, X; U), for the remaining t ∈
[0, ε], we want to glue another path from Rε(U) = Φε ◦U ◦ φε to U. This can be done by using
a scaled version of the homotopy R but backwards and applied to U. For t ∈ [0, ε], we define
Rt(ε) := R1+t−t/ε(U). This yields the desired retraction and the space Emb

D
ε,k−1,n
−

( Dk,n, X; U) is
contractible. Therefore, we obtain a weak homotopy equivalence

Embℓε( Dk,n, X) ≃w Ω Embε
uε

0
(Dk−1,n, X).

Since it is the total space that is contractible, the connecting-map in the long exact sequence of
homotopy groups provides the weak homotopy equivalence. In that case, the weak homotopy
equivalence can be upgraded to a pair of inverse homotopy equivalences. This process is dis-
cussed in [KT23b, Appendix A] and is a general fact for Hurewicz fibrations whose connecting
map on homotopy groups is a weak equivalence. In this case, the connecting map can be iden-
tified using the ambient isotopy theorem. We simply give a description of the two homotopy
inverse maps

Embℓε( Dk,n, X) Ω Embε
uε

0
(Dk−1,n, X).

fεU

aU

The map aU : Ω Embε
uε

0
(Dk−1,n, X) −→ Embℓε( Dk,n, X) sends a loop of multi-disks Dk−1,n in X

to an ambient isotopy which ends with a diffeomorphism taking the basepoint U to another
multi-half-disk Dk,n in X that agrees with U on its boundary. The map fεU : Embℓε( Dk,n, X) −→
Ω Embε

uε
0
(Dk−1,n, X) is given by foliating a given multi-half-disk Dk,n in X by a family of multi-

disks Dk−1,n, starting at u+ := U|
D

k−1,n
+

until one arrives at u− := U|
D

k−1,n
−

, and then going back
via a foliation of U to obtain a loop of multi-disks. □

Remark 11. Without identifying the explicit homotopy inverses, another reason we can up-
grade the weak equivalence to a homotopy equivalence is due to the fact that the spaces in
question have the homotopy type of a CW-complex. Indeed, in [Pal66], Palais demonstrated
that embedding spaces are dominated by CW-complexes, as embedding spaces are metrisable
infinite-dimensional manifolds, see [Mic80]. Due to a theorem of Whitehead, see [Whi50], such
spaces have the homotopy type of a CW-complex, albeit possibly a different one. In [Mil59],
Milnor showed among other things that the space of maps from a finite CW-complex to any
CW-complex is homotopy equivalent to a CW-complex. Therefore, taking the loop space does
not tamper with the CW-structure. After realising the connecting map by a map on spaces via



A LIGHT BULB THEOREM FOR MULTI-DISKS 15

the ambient isotopy theorem, Whitehead’s theorem gives the desired upgrade to a homotopy
equivalence.

The setting of Theorem A is the one with dual spheres. Recall, let M be a d-dimensional,
compact, oriented, connected manifold with non-empty boundary ∂M and consider a link ℓ :
Sk−1 ↪→ ∂M with a framed dual link G : Sd−k,n ↪→ ∂M. That is, we require that ℓi ⋔ Gi = pt,
ℓi ∩ Gj = ∅ for i ̸= j and Gi has trivialised normal bundle. We require that the link ℓ is slice in
M, meaning the embedding space Embℓ(D

2,n, M) is non-empty to begin with. To provide as
many perspectives as possible, we give an alternative description in the case of d ≥ 2k.

Proposition 12. Let d ≥ 2k. In the setting with dual spheres, the space Embℓ(D
k,n, M) of neat

embeddings is non-empty if and only if ℓi is null-homotopic in M.

Proof. One direction is immediate. If the embedding space Embℓ(D
k,n, M) is non-empty, there

exists an embedded multi-disk Dk,n in M that bounds the link ℓ. Thus, every link component
is null-homotopic by the corresponding component of the embedded multi-disk. Now, sup-
pose that each component ℓi is null-homotopic in M. It is a well-known fact that a continuous
map between smooth manifolds is homotopic to a smooth map, see for example [BT82, Pro-
position 17.8]. Therefore, we can assume that every null-homotopy is given by a smooth disk
in M. Since the set of generic immersions is open and dense in C∞(D2,n, M) with the Whitney
C∞-topology ([GG73, Chapter 3, Corollary 3.3]), we can furthermore assume that the set of null-
homotopies is given by a generically immersed multi-disk. Hence, there are only finitely many
points of transverse intersection. This is still far from being an embedding, as each disk can
intersect itself transversally, and different disks can intersect each other transversally as well.
We use the existence of the framed dual spheres to tube the disks away from each intersection
point. This is known as Norman’s trick, as discussed in [Nor69]. A dimensionally reduced
version is depicted below in Figure 4. Note that there is a choice of the dual sphere we use to
tube away a section of the multi-disk. Since the dual spheres are framed, we can tube away as
many points of intersection as we want. Therefore, there exists an embedded multi-disk, and
the space Embℓ(D

k,n, M) is non-empty. □

To acquire Theorem A from Theorem 10, the final step lies in establishing a homotopy equival-
ence Embℓε(Dk,n, M) ≃ Embℓε( Dk,n, MG) where

MG := M ∪νG hd−k+1,n

is being obtained by attaching a (d− k + 1)-handle along the normal neighbourhood of each
dual sphere Gi. In the setting of n = 1, this is the content of [KT23b, Section 3.2], and the
argument in the case of multi-disks is practically the same. We follow the argument, although
we only give a sketch in favour of readability. The idea is that attaching a multi-handle hd−k+1,n

to the dual link is inverse to “drilling” out a neighbourhood of u+ = U(Dk−1,n
+ ), which is

removing a multi-handle hk−1,n.
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−→

FIGURE 4. Performing a Norman trick to get rid of the intersection point p of the disks Dk
i

and Dk
j in M.

We extend the embedding u+ : D
k−1,n
+ ↪→ MG to an embedding T u+ : D

k−1,n
+ ×Dd−k+1

≤ε ↪→ MG

onto a closed tubular neighbourhood νεu+ of u+. By re-parametrisation, we may assume that
the restriction of T u+ on D

k−1,n
+ × [0, ε] agrees with the ε-augmentation uε = U(Dε,k−1,n

+ ) and
that im(uε

+) = νεu+ ∩ im(U) by decreasing ε until the multi-half-disk U does not return to the
closed neighbourhood νεu+ of u+. In this setting, T u+(D

k−1,n
+ ×Dd−k+1

≤ε/2
) is a multi-handle

hd−k+1,n that is attached to the complement MG \ T u+(D
k−1,n
+ ×Dd−k+1

<ε/2
). The other way

around, the aforementioned complement is obtained by removing a (k− 1)-multi-handle from
MG, where each component of the multi-handle has one component of u+(D

k−1,n
+ ) as core.

The result is a manifold with corners which can be smoothened. This procedure is explained in
[KT23b, Section 3.2] and we omit the technicality of explicitly dealing with smoothing corners
here. As part of the procedure, one chooses an open subset hn

+ ⊆ νεu+ which is the open tu-
bular neighbourhood νε/2u+ with corners smoothed inside νεu+. This way, MG \ hn

+ is a smooth
manifold with boundary. Note that removing hn

+ from MG turns a multi-half-disk in MG into
a neat disk in MG \ hn

+. Let D k,n := T u−1
+ (hn

+) ⊆ Dk,n be the multi-disk obtained in this way,
before embedding it into MG \ hn

+. Let us fix an diffeomorphism Dk,n ∼= D k,n which is the
identity on a neighbourhood of D

ε,k,n
− \D

ε,k,n
+ , the set-wise difference of the outer boundary

ε-neighbourhood and the inner boundary ε-neighbourhood.

Lemma 13. There is a homotopy equivalence

Embℓε/2(D k,n, MG \ hn
+) Embℓε( Dk,n, MG).

•∪uε
+

The boundary condition ℓε/2 is needed such that this map is well-defined. Of course, one
can scale ε accordingly and this does not change the homotopy type as it is just local re-
parametrisation. The above lemma is precisely [KT23b, Lemma 3.9] in the case of multi-disks,
but the proof can be repeated word by word. As it is technical, we omit it for the sake of taking
load off of the notation.
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At this point, the reader has most likely already seen why Lemma 13 is useful. Namely, since
MG := M ∪νG hd−k+1,n, removing a neighbourhood hn

+ of the co-core of the attached multi-
handle hd−k+1,n clearly gives back the original manifold M. Therefore, after possibly rescaling
ε, we obtain the desired homotopy equivalence

Embℓε(Dk,n, M) ≃ Embℓε(Dk,n, MG \ hn
+) ≃ Embℓε( Dk,n, MG).

Proof of Theorem A. The just mentioned homotopy equivalence combined with Theorem 10
applied to X := MG yields a proof of Theorem A. Indeed, we have

Embℓε(Dk,n, M) Embℓε( Dk,n, MG) Ω Embε
uε

0
(Dk−1,n, X)≃ Theorem 10

≃

and Lemma 9 yields a weak equivalence Embℓ(D
k,n, M) ≃w Ω Embε

uε
0
(Dk−1,n, X). The study

of isotopy classes of multi-disks is a question about π0 of embedding spaces, hence the weak
equivalence suffices.

Remark 14. There is an obvious question regarding the difference of the homotopy type of ε-
augmented embedding spaces appearing in Theorem A and standard embedding spaces. For
the moment, we treat the former to be understood from the latter. A discussion will follow
much later in Section V. If the reader is familiar with Hirsch-Smale theory, which is being
recalled in Section IV, they are invited to skip ahead to complete the discussion on the homo-
topical reduction from Embℓ(D

2,n, M) to Embu0(D
1,n, MG).

On the history of half-disk tricks. As we mentioned in the proof of Theorem 10, the applic-
ation of Theorem 4 to half-disks, or multi-half-disks in our case, is known as Cerf’s half-disk
trick which made its first appearance in [Cer62]. The half-disk trick was used to show the ho-
motopy equivalence Diff∂(D

d) ≃ Ω Emb∂(D
d−1, Dd). Note that Theorem A combined with

Lemma 9 recovers this result, see also [KT23b]. Not only does it recover the result, but also its
proof. Indeed, let M = Dd,2, and consider the boundary condition ℓ = ∂Dd

1. The dual sphere
G : S0 ↪→ ∂(Dd,2) has one point in ∂Dd

1, another in ∂Dd
2. In this case, MG

∼= Dd and we obtain

Diff∂(D
d) ∼= Embℓ(D

d, Dd,2) ≃ Ω Embu0(D
d−1, Dd).

In his thesis [Goo90], Goodwillie studied smooth concordance embeddings. Let M be a smooth,
d-dimensional manifold and N ↪→ M a fixed neat embedding of a compact manifold N. One
should think about N as a submanifold of M. A concordance embedding of N into M is an embed-
ding E : N × I ↪→ M× I such that E −1(M× {i}) = N × {i} for i ∈ {0, 1} and E agrees with
the standard inclusion on a neighbourhood of N × {0} ∪ (∂M ∩ N)× I ⊆ N × I. Let CE(N, M)

be the space of such embeddings, topologised by the smooth topology. Goodwillie used a half-
disk trick to show the homotopy equivalence CE(Dk, M ∪ hd−k) ≃ ΩCE(Dk−1, M). A similarly
flavoured delooping trick is discussed in [GKK23, Section 2.6] by Goodwillie, Krannich, and
Kupers.
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In [KK24], Knudsen and Kupers studied the dependence of the Goodwillie-Weiss tower on
the smooth structure of both the source and target manifold. In particular, they showed that
embedding calculus does not distinguish exotic smooth structures in dimension 4. The slogan
seems to be that embedding calculus operates as if smoothing theory were true. During the
discussion of an example of convergence in handle codimension 2, see [KK24, Section 6.2.4],
they used the half-disk trick as presented in the proof of Theorem 10.
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III. APPLICATION OF THE WORK OF DAX

The idea is to study the homotopy type of the embedding space Emb∂(D
1,n, M) of neat embed-

dings of multi-arcs into a compact, oriented, connected 4-manifold M with non-empty bound-
ary ∂M, by comparing it to the space of immersions, Imm∂(D

1,n, M). There exist many strong
tools to study the homotopy type of immersion spaces, mainly Hirsch-Smale theory. In the as-
sociated long exact sequence of homotopy groups of the pair (Imm∂(D

1,n, M), Emb∂(D
1,n, M)),

there is a relative homotopy group. In particular, we are interested in the second relative homo-
topy group π2(Imm∂(D

1,n, M), Emb∂(D
1,n, M), u) for a chosen basepoint u ∈ Emb∂(D

1,n, M).
This agrees with the second homotopy group of the layer of the map T2 −→ T1 in the Goodwillie-
Weiss tower associated to the embedding space Emb∂(D

1,n, M). In this section, we compute
this group using cobordism groups and an isomorphism introduced by Dax in [Dax72]. We
give a geometric interpretation of the Dax isomorphism, together with an explicit inverse, gen-
eralising results by Kosanović and Teichner in [KT23b] to the setting of multi-arcs.

III.1. THE DAX ISOMORPHISM FOR MULTI-ARCS IN 4-MANIFOLDS

We begin with the statement of the Dax isomorphism and the definition of the cobordism
groups introduced by Dax in our case of neat embeddings of multi-arcs in a 4-manifold. Let
V be a smooth, compact r-manifold with non-empty boundary ∂V and X a smooth d-manifold
with non-empty boundary ∂X. Let us fix a neat embedding u : V ↪→ X.

Theorem 15 ([Dax72, p. 375]). In this setting, if d− 2r ≥ 0, then for 0 ≤ n ≤ 2d− 3r− 3, there is
an explicit isomorphism

πn(Imm∂(V, X), Emb∂(V, X), u) Ωn−(d−2r)(Cu; ϑu).
βn

Here, we are considering normal cobordism classes of n− (d− r)-dimensional manifolds over
a space Cu with a stable vector bundle ϑu. This includes the data of an n− (d− r)-dimensional
closed manifold N, a continuous map b : N −→ Cu, and a bundle isomorphism B : b∗(ϑu) −→
νN , where νN denotes the stable normal bundle of N. We write this as a tuple (N, b, B). A
normal cobordism over (N1, b1, B1) and (N2, b2, B2) consists of the following data. A compact
manifold W with ∂W = N1 + N2, an extension g of b1 + b2 to W such that the following diagram
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commutes
N1

W Cu

N2

ι2
b1

g

ι1
b2

and an extension of B1 + B2 to an isomorphism G : g∗(ϑu) −→ νW . On the boundary of W,
we identify νW |∂W with ν∂W ⊕R by an inward pointing vector field.

Remark 16. In the case of the space we take cobordism classes over (in our notation Cu) is
a point, we obtain framed cobordism classes Ωfr

n . The Pontrjagin collapse map yields an iso-
morphism

Ωfr
n πn(S) := colim−−−→k

πn+k(S
k)

∼=

to the n-th homotopy group of the sphere spectrum. This is one of the major connections
between differential geometry and stable homotopy theory.

Following the spirit of Kosanović and Teichner in [KT23b, Section 4.1], we do not give a full
description of the cobordism group as originally defined by Dax, but state the needed proper-
ties to understand and work with the Dax isomorphism. Another introduction to the work of
Dax, together with a comparison to the work of Haefliger, can be found in [GKW01, Chapter 1].
Before we direct our attention to the definition of the cobordism group, we recall the notion of
ordered and unordered configuration spaces.

Definition 17. Let X be a space and k ∈ N. The ordered configuration space of k points in X
is defined as C̃onfk(X) := Emb((x1, . . . , xk), X). The symmetric group Sk acts on this space
by renumbering the points. Forming the quotient, the base space Confk(X) of the fibration
sequence

Sk C̃onfk(X) Confk(X)

is called the unordered configuration space of k points in X. It is evident that

C̃onfk(X) ∼= Xk∖{(x1, . . . , xk) ∈ Xk : xi = xj for some i ̸= j}

which is the identification we will use.

Back to the Dax isomorphism, we define a homotopy equivalent subspace of Cu.

Definition 18. − There is a subspace E⋎
u ⊆ Cu which is given by the quotient of the space

Ẽ⋎
u := {(v1, v2, γ) ∈ C̃onf2(V)×Map([−1, 1], X) : γ(−1) = u(v1) and γ(1) = u(v2)}

by the Z/2-action given by the free involution sending (v1, v2, γ) to (v2, v1, γ−1). This
means that, in E⋎

u , paths from u(v1) to u(v2) are identified with their inverse paths from
u(v2) to u(v1). Classes in E⋎

u are denoted by [v1, v2, γ].
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− Let νV be the stable normal bundle over V, TX the tangent bundle of X. Let ϑ̃u be the bundle
over Ẽ⋎

u defined via the following pullback diagram.

ϑ̃u ν2
V ⊕ TX

Ẽ⋎
u V2 × X

(prV2 ,pr0)

⌟

The map (prV2 , pr0) : Ẽ⋎
u −→ V2 × X sends (v1, v2, γ) to (v1, v2, γ(0)) and is equivariant for

the Z/2-action given by the involution swapping the two coordinates of V2 and the identity
on X. The quotient of ϑ̃u by this Z/2-action is the restriction bundle ϑu|E⋎

u
.

Remark 19. Since νX ⊕ TX is trivial per definition, and νV ∼= νu ⊕ νX, there is an isomorphism
ϑ̃u := pr∗V2(ν

2
V)⊕ pr∗X(TX) ∼= pr∗V2(ν

2
u)⊕ pr∗X(νX).

Lemma 20. The subspace E⋎
u is homotopy equivalent to Cu.

Proof. This is discussed in [KT23b, Lemma 4.5], using a fibration sequence ΩX −→ Cu
prW−−→ W,

where W is the compactification to a manifold with boundary of Conf2(V). The subspace E⋎
u

can be identified with pr−1
W (Ẇ). The inclusion map i : Conf2(V) = Ẇ ↪→ W is a homotopy

equivalence, hence by the pullback diagram

pr−1
W (Ẇ) i∗(Cu) Cu

Ẇ Wi

prW
⌟

there is a homotopy equivalence E⋎
u ≃ Cu. □

The above lemma allows us to consider the simpler cobordism group Ωn−(d−2r)(E⋎
u ; ϑu|E⋎

u
) in-

stead of the original one Ωn−(d−2r)(Cu; ϑu) leading to an isomorphism

πn(Imm∂(V, X), Emb∂(V, X), u) Ωn−(d−2r)(E⋎
u ; ϑu|E⋎

u
).

β′n

We now tend to the case of neat multi-arcs in a compact, oriented, connected 4-manifold M with
non-empty boundary ∂M. Let u ∈ Emb∂(D

1,n, M) be a chosen basepoint. As just discussed,
Theorem 15 combined with Lemma 20 yields an isomorphism

β′2 : π2(Imm∂(D
1,n, M), Emb∂(D

1,n, M), u) −→ Ω0(E⋎
u ; ϑu|E⋎

u
)

which we now explicitly describe following [KT23b], to which we refer the reader for the dis-
cussion of the general case.
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Remark 21. This discussion should be compared to the second stage in the Goodwillie-Weiss
tower

...

T2 Emb∂(D
1,n, M)

Emb∂(D
1,n, M) T1 Emb∂(D

1,n, M)
ev1

ev2

for the space Emb∂(D
1,n, M). Note that the first stage T1 Emb∂(D

1,n, M) is homotopy equi-
valent to Imm∂(D

1,n, M). Indeed, the fundamental theorem of embedding calculus, see for
example [Wei99] and [GW99], implies that the evaluation map

ev2 : Emb∂(D
1,n, M) −→ T2 Emb∂(D

1,n, M)

to the second stage in the tower is 2-connected. A careful introduction can be found in [BW13]
or [BW18] for a more modern approach studying functors out of a configuration ∞-category.
For the sake of less cluttered notation, we now abbreviate Emb∂ := Emb∂(D

1,n, M), Imm∂ :=
Imm∂(D

1,n, M)) and Tk := Tk Emb∂(D
1,n, M). Comparing the long exact sequences of homo-

topy groups associated to the pairs (Imm∂, Emb∂) and (T1,T2) yields the following commutat-
ive diagram.

π2(Emb∂, u) π2(Imm∂, u) π2(Imm∂, Emb∂, u) π1(Emb∂, u) π1(Imm∂, u)

π2(T2, u) π2(T1, u) π2(T1,T2, u) π1(T2, u) π1(T1, u)

∂

∂

π1(ev2)π2(ev2) π2(ev2)

Applying the 5-Lemma yields an isomorphism

π2(ev2) : π2(Imm∂(D
1,n, M), Emb∂(D

1,n, M), u) π2(T1,T2, u)
∼=

of relative homotopy groups. Therefore, the Dax isomorphism β′2 computes the second homo-
topy group of the layer associated to the map T2 −→ T1 in the Goodwillie-Weiss tower. A nat-
ural question to ask is whether one can, in a stable range, express the homotopy groups of the
higher layers in the tower as certain cobordism groups, computable via the Atiyah-Hirzebruch
spectral sequence.

Back to the definition of β′2, an element in π2(Imm∂(D
1,n), M), Emb∂(D

1,n, M), u) is given by
the homotopy class of a map

F : (I2, I× {0}, ∂I× I∪ I× {1}) (Imm∂(D
1,n), M), Emb∂(D

1,n, M), u)

of pointed pairs of spaces. One should think about such a map in the following pictorial way
for n = 1, scanning through the square I2. This can be seen in Figure 5.
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−→I

I

u u u

I× {0} I× {t2} I× {1}

FIGURE 5. Scanning through I× {0} starts and ends with the embedding u, embeddings
D1 ↪→ M in between. Scanning through I× {t2} for 0 < t2 < 1 starts and ends with the
embeddings u, immersions D1 ↬ M in between. Scanning through I× {1} is constantly
the embedding u.

Note that, by adjunction for the Whitney C∞-topology, this can be seen as a map I2 ×D1,n −→
M with the obvious boundary conditions. Evaluating the map F(t1, t2) on x ∈ D1,n yields the
associated track

F̃ : I2 ×D1,n︸ ︷︷ ︸
dimension 3

I2 ×M︸ ︷︷ ︸
dimension 6

by sending (t1, t2, x) to (t1, t2, F(t1, t2)(x))

which, by the work of Dax in [Dax72, p. 329] (see [Dax72, p. 331] for the relative case), we can
assume to be an immersion without triple points, and only finitely many double points that are
isolated. Such a map F, whose track satisfies these conditions, is called perfect. We will now
explicitly describe the image of [F] under the isomorphism β′2, the cobordism class of the tuple
(∆Dax, bDax, BDax). Note that F being perfect is equivalent to the hollow diagonal square map

F̃2
h : C̃onf2(I2 ×D1,n) (I2 ×M)2

being transverse to the diagonal ∆I2×M in (I2 × M)2. Let us assume that the double points of
the track F̃ are given by p1, . . . , pm. The double point pre-image set is given by

∆̃Dax := (F̃2
h )
−1(∆I2×M) ∼= {(⃗t, x, y) ∈ I2 × C̃onf2(D

1,n) : F(⃗t)(x) = F(⃗t)(y)}

with t⃗ = (t1, t2) ∈ I2. Note that the pre-image points in this case are ordered. Forming the
quotient by the Z/2-action given by the free involution interchanging the two coordinates
yields the space

∆Dax := {(⃗t, [x, y]) ∈ I2 × Conf2(D
1,n) : F(⃗t)(x) = F(⃗t)(y)}.

Clearly, the map F embeds ∆Dax into the manifold M as the double point set of the track F̃. We
now define the map bDax : ∆Dax −→ E⋎

u as follows. For t⃗ ∈ I2, let Ht⃗ : I −→ I2 be defined as
Ht⃗(s) := 1⃗− s(⃗1− t⃗), the linear path from 1⃗ = (1, 1) to t⃗ = (t1, t2). The map

bDax(⃗t, [x, y]) := [x, y, γ := F(Ht⃗)(x) · F(Ht⃗)(y)
−1]

sends an element (⃗t, [x, y]) ∈ ∆Dax to the tuple [x, y] together with a loop from u(x) to u(y).
Ignoring the evaluation at x and y for a moment, F(Ht⃗) is a path from F(⃗1) = u to F(⃗t) through
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immersions. We start by evaluating each immersion at x, starting from u(x) and ending at
F(⃗t)(x). Since (⃗t, [x, y]) ∈ ∆Dax, we know that F(⃗t)(x) and F(⃗t)(y) agree as a double point p.
We then return to u(y) by tracing back through the immersions, evaluating at y. Therefore this
indeed defines a path from u(x) to u(y). We need to distinguish two fundamentally different
kinds of double points p, as this will become important in the upcoming section.

− Those, whose pre-image points {(⃗t, x), (⃗t, y)} = F̃−1({⃗t, p}) lie in the same connected com-
ponent of I2 ×D1,n, which is depicted on the left side in Figure 6.

− Those, whose pre-image points {(⃗t, x), (⃗t, y)} = F̃−1({⃗t, p}) lie in different connected com-
ponents of I2 ×D1,n, which is depicted on the right side in Figure 6.

−→ −→
Ht⃗

Ht⃗

Ht⃗

FIGURE 6. In both cases, the paths are given by following the points. The path correspond-
ing to self-intersection of a single disk on the left-hand side. Note that the points follow the
movement of the “twisting” motion, tracing out a loop. This is better seen when thinking
about a movie of twisting the arc, where each state is displayed by one of the arcs in the
figure. The path corresponding to intersection of different sheets on the right-hand side.

To define the cobordism class (∆Dax, bDax, BDax) ∈ Ω0(E⋎
u ; ϑu|E⋎

u
) we are only missing informa-

tion coming from the stable normal bundle in form of BDax, an isomorphism from b∗Dax(ϑu|E⋎
u
)

to the stable normal bundle ν∆Dax .

ν∆Dax b∗Dax(ϑu|E⋎
u
) ϑu|E⋎

u

∆Dax E⋎
u

BDax
∼=

⌟

bDax

Consider the quotient map q : ∆̃Dax −→ ∆Dax given by the involution. For the pullback bundle
q∗ν∆Dax , we have a stable isomorphism

q∗ν∆Dax
∼= ν∆̃Dax

∼= ν(I2×D1,n)2 |∆̃Dax
⊕ ν∆̃Dax⊆(I2×D1,n)2

∼=s ν2
D1,n |∆̃Dax

⊕ (F̃2
h )
∗(ν∆

I2×M⊆(I2×M)2)
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by tracing through the definition of ∆̃Dax. In particular, this yields a stable isomorphism

ν∆̃Dax⊆(I2×D1,n)2
∼=s (F̃2

h )
∗(ν∆

I2×M⊆(I2×M)2).

For bDax : ∆Dax −→ E⋎
u , there is a double covering map b̃Dax : ∆̃Dax −→ Ẽ⋎

u which induces an
isomorphism q∗b∗Dax(ϑu|E⋎

u
) ∼= b̃∗Dax(ϑ̃u). We first establish a stable bundle isomorphism B̃Dax :

b̃∗Dax(ϑ̃u) −→ q∗ν∆Dax by considering both components of ϑ̃u := pr∗
(D1,n)2 ν2

D1,n ⊕ pr∗M(TM) (recall

Definition 18). The first component is immediate, there is an isomorphism b̃∗Dax(pr
∗
(D1,n)2 ν2

D1,n) ∼=
ν2

D1,n |∆̃Dax
by definition. For the second component, consider the diagram

∆̃Dax Ẽ⋎
u

(I2 ×M)2 M

b̃Dax

F̃2
h |∆̃Dax

prM

pr1

which commutes as evaluation on (⃗t, x, y) yields both F(⃗t)(x) by definition of ∆̃Dax. This yields
a stable bundle isomorphism

b̃∗Dax(pr
∗
M(TM)) ∼= (pr1 ◦ F̃2

h )
∗(TM) ∼=s (F̃2

h )
∗(pr∗1(T(I

2 ×M)) ∼= (F̃2
h )
∗(ν∆

I2×M⊆(I2×M)2).

Hence, there is a stable bundle isomorphism B̃Dax : b̃∗Dax(ϑ̃u) ∼= q∗b∗Dax(ϑu|E⋎
u
) −→ q∗ν∆Dax

which is Z/2-equivariant under the involution. Hence it descends to a stable bundle isomorph-
ism BDax : b∗Dax(ϑu|E⋎

u
) −→ ν∆Dax .

For a chosen basepoint u ∈ Emb∂(D
1,n, M), the isomorphism

β′2 : π2(Imm∂(D
1,n, M), Emb∂(D

1,n, M), u) −→ Ω0(E⋎
u ; ϑu|E⋎

u
)

provided by Theorem 15 and Lemma 20 is defined by sending a homotopy class [F] to the
cobordism class (∆Dax, bDax, BDax) ∈ Ω0(E⋎

u ; ϑu|E⋎
u
).

III.2. A GEOMETRIC INTERPRETATION OF THE DAX ISOMORPHISM

Computing the cobordism group. Before we give a geometrically flavoured isomorphism, let
us begin with computing the cobordism group in Theorem 15 in the case of multi-arcs in a
4-manifold. This is the content of the following theorem.

Theorem 22. Let M be a compact, oriented, connected 4-manifold with non-empty boundary ∂M. For
any choice of a basepoint u ∈ Emb∂(D

1,n, M) of the space of neat embeddings, there is an isomorphism

Ω0(E⋎
u ; ϑu|E⋎

u
) ∼= Z[π0(Conf2(D

1,n), b0)× π1(M)]

and we identify π0(Conf2(D1,n), b0) with Tn := {(i1, i2) ∈ {1, . . . , n}2 : i1 ≤ i2}.

Before we can give a proof of the above theorem, we need a technical well-known result on
double-evaluation maps.
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Lemma 23. Let X be a locally compact Hausdorff space, i : A ↪→ X be a closed cofibration. For any
space Y, the map

i∗ : Map(X, Y) Map(A, Y)

induced by pre-composition is a fibration.

Proof. Let Z be some space. The lifting problem is the following.

Z

Map(I, Map(X, Y)) Map(I, Map(A, Y))

Map(X, Y) Map(A, Y)

ev0ev0

i∗

H

f

By adjunction, we can consider the following diagram.

Z× A Z× A× I

Z× X Z× X× I

Y

H♭

f ♭

Since i is a closed cofibration, there exists a map Z× X × I −→ Y making the second diagram
commute. The adjoint to this map is the dotted arrow in the first diagram, thus a lift exists. □

This result is to be compared to Theorem 4. The situation of mapping spaces is much easier to
handle from the perspective of homotopy theory.

Corollary 24. The double-evaluation map (ev0, ev1) : Map(I, X) −→ X× X is a fibration.

Proof. The inclusion ∂I ↪→ I is a closed cofibration. Now we apply Lemma 23. □

Equipped with this result, we can tackle the proof of Theorem 22.

Proof of Theorem 22. We first calculate π0(Ẽ⋎
u , ẽ0) for a chosen basepoint ẽ0 ∈ Ẽ⋎

u . Notice that we
have a pullback diagram

Ẽ⋎
u Map(I, M)

C̃onf2(D1,n) M×M

(ev0,ev1)

(u,u)

⌟

which induces a long exact sequence of homotopy groups since the double-evaluation map
(ev0, ev1) : Map(I, M) −→ M × M is a fibration by Corollary 24. Hence, the induced map
Ẽ⋎

u −→ (D1,n)2∖∆D1,n is a fibration as well. Let b̃0 ∈ C̃onf2(D1,n) be the image of the basepoint
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ẽ0 under this map, chosen as a canonical basepoint. We have the following long exact sequence
of homotopy groups.

. . . π1(C̃onf2(D1,n), b̃0)× π1(Map(I, M)) π1(M×M)

π0(Ẽ⋎
u , ẽ0) π0(C̃onf2(D1,n), b̃0)× π0(Map(I, M)).

(u,u)∗−(ev0,ev1)∗

Note that Map(I, M) is homotopy equivalent to M by contracting each interval to a chosen
endpoint. Since M is assumed to be connected, we suppress the basepoint in the notation.
Each connected component of C̃onf2(D1,n) ∼= (D1,n)2∖∆D1,n is contractible, hence the pure
braid group π1(C̃onf2(D1,n), b̃0) is trivial. Last but not least, (ev0, ev1)∗ is the diagonal map, as
for any γ ∈ π1(Map(I, M)), the induced elements ev0(γ) and ev1(γ) are homotopic through
the interval I. This leaves us with the following four-term exact sequence.

π1(M) π1(M)× π1(M) π0(Ẽ⋎
u , ẽ0) π0(C̃onf2(D1,n), b̃0)

∆

and therefore π0(Ẽ⋎
u , ẽ0) ∼= π0(C̃onf2(D1,n), b̃0) × π1(M). Now we consider the fibration se-

quence

Z/2 Ẽ⋎
u E⋎

u

induced by the involution. Invoking the long exact sequence of homotopy groups immediately
yields π0(E⋎

u , e0) ∼= π0(Conf2(D1,n), b0)× π1(M) for e0 and b0 the canonical basepoints of E⋎
u

and Conf2(D1,n) respectively. Note that the initial choice of ẽ0 does not matter as no other
homotopy group in the four-term exact sequence depends on a basepoint. The product space
(D1,n)2 clearly has n2 path-connected components. Removing the diagonal ∆D1,n results in n
additional path-connected components, thus π0(C̃onf2(D1,n), b0) ∼= {1, . . . , n2 + n} as a set.
The involution acts as a “folding map”, leaving exactly n(n + 1)/2 path-connected components.
Hence π0(Conf2(D1,n), b0) ∼= Tn. To compute the cobordism group Ω0(E⋎

u ; ϑu|E⋎
u
) we note that

there is an isomorphism Ω0(E⋎
u ; ϑu|E⋎

u
) ∼= H0(E⋎

u ; Z(ϑu|E⋎
u
)) as we are considering cobordism of

0-dimensional manifolds over E⋎
u . Here, Z(ϑu|E⋎

u
) denotes the local coefficient system induced

by the orientation of the bundle ϑu|E⋎
u

over connected components of E⋎
u . We show that this is

constant and Z. By the definition of the bundle ϑu|E⋎
u

and Remark 19, this amounts to showing
that there cannot exist a loop in Conf2(D1,n) that lifts to E⋎

u under prD1,n : E⋎
u −→ Conf2(D1,n)

and is orientation-reversing in the quotient of ν2
u under the involution. This is given since

π1(Conf2(D1,n), b0) is trivial. Therefore, the bundle ϑu|E⋎
u

is orientable over each connected
component, hence the local coefficient system is constant and Z. This leaves us with the desired
isomorphism Ω0(E⋎

u ; ϑu|E⋎
u
) ∼= Z[Tn × π1(M)]. □

Remark 25. One can similarly write Z[Tn × π1(M)] ∼=
⊕

Tn
Z[π1(M)] but our notation will

come in handy later in Section IV.
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Kosanović and Teichner have a version of Theorem 22 that allows the domain manifold to be
any simply-connected manifold V and the target manifold M to be of arbitrary dimension, as
long as the conditions of Theorem 15 are satisfied, see [KT23b, Proposition 4.12]. The above
discussion immediately gives rise to the case of disjoint unions of simply-connected manifolds.
If the domain manifold V is not simply-connected, one could obtain results by restricting to
those manifolds that induce an injection

π1(C̃onf2(V), ṽ0)× π1(Map(I, M)) π1(M×M).

This can be reduced to an injection π1(Conf2(V), v0) ↣ π1(M) from the braid group into

π1(M) by considering the fibration sequence E⋎
u

prV2−−→ Conf2(V), see Lemma 27 for a discus-
sion in the case of V = D1,n. In the case of V connected and dim(V) ≥ 3, the inclusion
C̃onfk(V) ↪→ Vk induces an isomorphism on fundamental groups. This follows from consider-
ing the fat diagonal as a union of submanifolds of Mk and using Thom’s transversality theorem
to homotope every loop away from the fat diagonal.

A geometric Dax isomorphism. We will now describe an explicit isomorphism

Dax : π2(Imm∂(D
1,n), M), Emb∂(D

1,n, M), u) Z[Tn × π1(M)].

We need to define explicit elements in π1(M), for which we pick a basepoint b ∈ ∂M, together
with whiskers ϕi : I −→ M with ϕi(0) = b and ϕi(1) = ui(−1) for ui : D1 ↪→ M a com-
ponent of the chosen neat embedding u : D1,n ↪→ M. In this case, we say the embedding u is
whiskered. Furthermore, for each connected component of D1

i of D1,n and points v ∈ D1
i , we

define whiskers φv
i : I −→ D1

i with φv
i (0) = −1 and φv

i (1) = v. Recall that we can assume
maps

F : (I2, I× {0}, ∂I× I∪ I× {1}) (Imm∂(D
1,n, M), Emb∂(D

1,n, M), u)

representing an element [F] ∈ π2(Imm∂(D
1,n, M), Emb∂(D

1,n, M), u) to be perfect. Hence, the
associated track F̃ : I2 ×D1,n −→ I2 ×M has no triple point, and only finitely many isolated
double points p1, . . . , pm. As before, there are two different kinds of double points.

− Those, whose pre-image points {(⃗tj, xj), (⃗tj, yj)} = F̃−1({⃗tj, pj}) lie in the same connected
component of I2 ×D1,n.

− Those, whose pre-image points {(⃗tj, xj), (⃗tj, yj)} = F̃−1({⃗tj, pj}) lie in different connected
components of I2 ×D1,n.

To each such double point, we associate both an element gj ∈ π1(M) and a sign ε j ∈ {±1} in
the following way. Let us consider the first case. By possibly re-parametrising I2 ×D1,n, we
can assume that both xj and yj lie in a component I×{t2}×D1 with xj < yj. Scanning through
the component is shown below in Figure 7.
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−→D1

I

u u

pj

xj

yj

0 1/4 1/2 3/4 1

FIGURE 7. Scanning through I× {t2} ×D1 which contains the pre-images xj and yj of the
double point pj.

The element gj ∈ π1(M) is represented by the loop

Oj := ϕi · F(⃗tj)(φ
xj
i ) · F(⃗tj)(φ

yj
i )
−1 · ϕ−1

i

which is depicted on the left side in Figure 9. This should be compared to the definition of
the loop in [KT23b, Theorem 4.14]. Let us now consider the second case, when the pre-image
points lie in two different connected components, let us say D1

i1 and D1
i2 for i1 < i2. Scanning

through the components is shown in Figure 8.

−→

D1
i2

D1
i1

I

I

u u

pj

xj

yj

0 1/2 1

FIGURE 8. Scanning through I × {t2} ×D1
i1 and I × {t2} ×D1

i2 which contain the pre-
images xj and yj of the double point pj.

The associated element gj ∈ π1(M) is represented by the loop

Oj := ϕi1 · F(⃗tj)(φ
xj
i1
) · F(⃗tj)(φ

yj
i2
)−1 · ϕ−1

i2

and is depicted on the right side in Figure 9. Note that the definition is indeed very similar to
the one in the first case. The difference is that we switch arcs as soon as we hit the double point
pj, and then travel back along the other arc. The formula holds for i1 ≤ i2 and includes the
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previous case. We made the distinction to make the reader aware of the two different kinds of
intersection. Note that the ordering of the path-components of D1,n is crucial for the definition
of the loops. Furthermore, in the first case, the ordering is given by the fact that the double
points are isolated. This way, we can compare the D1-coordinate of the pre-image points xj

and yj and choose the smaller valued one first (which was previously given by the assumption
xj < yj).

b

ui(−1)

∂M

ϕi

pjF(⃗tj)(φ
xj
i )

F(⃗tj)(φ
yj
i )
−1

b

∂M

ui2(−1)

ui1(−1)

ϕi1

F(⃗tj)(φ
xj
i1
)

ϕ−1
i2

F(⃗tj)(φ
yj
i2
)−1

pj

FIGURE 9. On the left side, the loop ϕi · F(⃗tj)(φ
xj
i ) · F(⃗tj)(φ

yj
i )
−1 · ϕ−1

i associated to the self-
intersection of a single arc. On the right side, the loop ϕi1 · F(⃗tj)(φ

xj
i1
) · F(⃗tj)(φ

yj
i2
)−1 · ϕ−1

i2
associated to the intersection of two arcs. Both cases can be seen as “changing sheets”.

In this case, the sign ε j ∈ {±1} is obtained from comparing the orientation of the tangent space
T(⃗tj,pj)

(I2 ×M) and

dF̃(T(⃗tj,xj)
(I2 ×D1,n))⊕ dF̃(T(⃗tj,yj)

(I2 ×D1,n)).

The last part of the data is coming from the set Tn which gives the information which con-
nected components of D1,n are intersecting each other, and hence the type of intersection as
just discussed. An element (i1, i2) ∈ Tn denotes the intersection of the component i1 with the
component i2. Note that this includes self-intersection of a single arc by considering i1 = i2.
For the element gj associated to the intersection of arcs ij1 and ij2 , we write Tj := (ij1 , ij2) and
gj,Tj = (Tj, gj) ∈ Tn × π1(M). We then define Dax([F]) := ∑m

j=1 ε jgj,Tj .

Theorem 26. Let M be a compact, oriented, connected 4-manifold with non-empty boundary ∂M and
a basepoint b ∈ ∂M. For a choice of a whiskered neat embedding u : D1,n ↪→ M, the map

Dax : π2(Imm∂(D
1,n, M), Emb∂(D

1,n, M), u) Z[Tn × π1(M)]

defined by Dax([F]) := ∑m
j=1 ε jgj,Tj as above is an isomorphism.
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Note that additivity of Dax comes from gluing together two vertical faces of I2, which is com-
position in the second relative homotopy group. Under Dax, this yields added intersection
counts.

Lemma 27. The projection

E⋎
u Conf2(D1,n)

pr
(D1,n)2

is a fibration sequence with fibre space homotopy equivalent to ΩM.

Proof. Let us start by considering an element [v1, v2] ∈ Conf2(D1,n). The fibre pr−1
(D1,n)2([v1, v2])

contains paths γ ∈ Map([−1, 1], M) such that γ(−1) = u(v1) and γ(1) = u(v2), meaning
paths in M that start at u(v1) and end in u(v2). There is a homotopy equivalence ΩM ≃
pr−1

(D1,n)2([v1, v2]) by the following two homotopy inverses. Let us assume that v1 lies in the

component D1
i1 and v2 in the component D1

i2 of D1,n. Note that we do not exclude the case of
i1 = i2.

− f : pr−1
(D1,n)2([v1, v2]) −→ ΩM sending such a path γ ∈ Map([−1, 1], M) starting at u(v1) and

ending in u(v2) to the based loop

f (γ) := ϕi1 · u(φv1
i1
) · γ · u((φv2

i2
)−1) · ϕ−1

i2
.

− g : ΩM −→ pr−1
(D1,n)2([v1, v2]) sending a based loop ρ ∈ ΩM to the path

g(ρ) := u((φv1
i1
)−1) · ϕ−1

i1
· ρ · ϕi2 · u(φv2

i2
)

starting at u(v1) and ending in u(v2).

These maps are clearly homotopy inverses, hence ΩM ≃ pr−1
(D1,n)2([v1, v2]) and we indeed have

a fibration sequence

ΩM E⋎
u Conf2(D1,n).

pr
(D1,n)2

Note that this can also be obtained by restricting the fibration sequence mentioned in the proof
of Lemma 20 to the subspace Ẇ. □

Remark 28. This fibration sequence gives an alternative and, admittedly, simpler proof of The-
orem 22.

Proof of Theorem 26. We start with a formal discussion, unravelling the given data. The main
argument then boils down to showing that the loops

Oj := ϕi1 · F(⃗tj)(φ
xj
i1
) · F(⃗tj)(φ

yj
i2
)−1 · ϕ−1

i2

defined above are based homotopic to the loops appearing in the definition of the Dax iso-
morphism, see Figure 6. A cobordism class of bDax −→ E⋎

u is given by the sum of signed
connected components of E⋎

u containing the image im(bDax). The sign εDax ± 1 comes from
the bundle isomorphism BDax : b∗Dax(ϑu|E⋎

u
) −→ ν∆Dax . It is positive if BDax preserves the
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orientation, negative otherwise. We can similarly pass to the setting of the space Ẽ⋎
u before

considering the Z/2-action given by the involution. This has the advantage of being able to
use the fibration sequence of Lemma 27 while keeping track of direction. Let us consider a map

F : (I2, I× {0}, ∂I× I∪ I× {1}) (Imm∂(D
1,n), M), Emb∂(D

1,n, M), u)

representing an element [F] ∈ π2(Imm∂(D
1,n), M), Emb∂(D

1,n, M), u) and a tuple (⃗t, x, y) ∈
∆̃Dax, with associated double point F(⃗t)(x) = pj = F(⃗t)(y). Under the identification of the fibre
space of the fibration

E⋎
u Conf2(D1,n)

pr
(D1,n)2

as discussed in Lemma 27, the image of b̃Dax((⃗t, x, y)) given as the path

γ := F(Ht⃗)(x) · F(Ht⃗)(y)
−1

from u(x) to u(y) corresponds to the class [ f (γ) = ϕi1 · u(φx
i1) · γ · u((φ

y
i2
)−1) · ϕ−1

i2
]. Here f is

the homotopy equivalence defined in the proof of Lemma 27, and we assume that x lies in the
component D1

i1 and y in D1
i2 of D1,n. We need to show that the loop f (γ) is based homotopic to

the loop Oj defined above. Then, they represent the same element in π1(M) and we are only
left with checking that the sign agrees.

FIGURE 10. The arcs coming from the original Dax isomorphism in colour, the new loops
defined in the geometric Dax isomorphism dashed. The left-hand side shows the case of
i1 = i2, whereas the right-hand side shows the case i1 ̸= i2.

To do so, we refer to Figure 6 and Figure 10, and remark that the defined 1-parameter family
of arcs is foliating a disk. The disk can be degenerate, for example in the case of the constant
map. Given a double point pj, by definition, the loop Oj lies on that disk. Indeed, a tuple
(⃗t, x, y) ∈ ∆̃Dax associated to the double point pj yields F(⃗t)(x) = pj = F(⃗t)(y), and Oj lies on
the immersed arc F(⃗t) after choosing whiskers ϕi1 and ϕi2 . The case of i1 ̸= i2 is depicted on the
right-hand side of Figure 10, the dashed loop beingOj. The loop f (γ) is given by following the
dashed whisker to the left, then the utmost left arrow, which is in the position of ui1 , then along
the arc γ following the points, and the analogous way back on the right-hand side. Ignoring
whiskers, both arcs lie on the same foliated disk, and hence one can homotope one loop into
another, fixing the point pj of changing sheets. The case of i1 = i2 is depicted on the left-hand
side of Figure 10 and has been discussed in [KT23b, Theorem 4.14]. Note that in the figure, one
of the arcs defined in the original Dax isomorphism wraps around the formed loop. A chosen
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homotopy fixes this part and drags everything else to the dotted line along the foliated disk.
This shows that the loops f (γ) and Oj are based homotopic and represent the same element in
the fundamental group π1(M).

It is left to check that the associated sign agrees. In the definition of the geometric Dax iso-
morphism, the sign ε j = ±1 associated to the double point pj comes from comparing the ori-
entation of the tangent space T(⃗tj,pj)

(I2 ×M) to the one of

dF̃(T(⃗tj,x)
(I2 ×D1,n))⊕ dF̃(T(⃗tj,y)

(I2 ×D1,n)).

Recall the quotient map q : ∆̃Dax −→ ∆Dax. Passing to the covering space, as mentioned above,
the sign εDax = ±1 coming from the original Dax isomorphism depends on whether the bundle
isomorphism B̃Dax : b̃∗Dax(ϑ̃u) −→ q∗ν∆Dax preserves orientation. Furthermore, recall the previ-
ously discussed isomorphisms

ν∆̃Dax⊆(I2×D1,n)2
∼=s (F̃2

h )
∗(ν∆

I2×M⊆(I2×M)2) ∼=s (F̃2
h )
∗(pr∗1(T(I

2 ×M))

∼= (pr1 ◦ F̃2
h )
∗(TM) ∼= b̃∗Dax(pr

∗
M(TM)).

Unravelling this isomorphism together with the splitting

ν∆̃Dax
∼= ν(I2×D1,n)2 |∆̃Dax

⊕ ν∆̃Dax⊆(I2×D1,n)2
∼=s ν2

D1,n |∆̃Dax
⊕ (F̃2

h )
∗(ν∆

I2×M⊆(I2×M)2),

the sign εDax = ±1 associated to the tuple (⃗t, x, y) is precisely +1 if and only if d(F̃2
h ) is orienta-

tion preserving at (⃗t, x, y) which is equivalent to the orientation of ν∆
I2×M⊆(I2×M)2 agreeing with

the orientation of

dF̃2|(⃗t,x,y)(T(I
2 ×D1,n)2) = (dF̃|(⃗t,x)(T(I

2 ×D1,n)), dF̃|(⃗t,y)(T(I
2 ×D1,n)))

∼= dF̃(T(⃗tj,x)
(I2 ×D1,n))⊕ dF̃(T(⃗tj,y)

(I2 ×D1,n))

after identifying the tangent bundle with the normal bundle of the diagonal in the product.
This is precisely the definition of the sign ε j = ±1 in the definition of the geometric Dax iso-
morphism. □

The realisation map. Let M be a compact, oriented, connected 4-manifold with non-empty
boundary ∂M and a basepoint b ∈ ∂M. Let u : D1,n ↪→ M be a whiskered neat embedding. An
explicit inverse to the isomorphism Dax is given by the following realisation map

r : Z[Tn × π1(M)] π2(Imm∂(D
1,n, M), Emb∂(D

1,n, M), u).

Given ((i1, i2), g) ∈ Tn × π1(M), the idea is to describe an explicit map

r(((i1, i2), g)) : (I2, I× {0}, ∂I× I∪ I× {1}) (Imm∂(D
1,n, M), Emb∂(D

1,n, M), u)

defining an element in π2(Imm∂(D
1,n, M), Emb∂(D

1,n, M), u) by taking its homotopy class and
use linear extension. Let us fix 0 < ε≪ 1 and partition I2 in the way depicted in Figure 11. We
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trace through a generic slice I× {t}, which yields a path through immersions (embeddings in
the case of t = 0) starting and ending at u. For fixed (i1, i2) ∈ Tn, we only need to describe a
family of immersions on the corresponding arcs, the other arcs simply stay in their basepoint
configuration. The reader should keep that in mind.

1 2 3

4
1− ε

ε 1− ε

FIGURE 11. A partition of I2.

For i1 ≤ i2, we describe a slice of part 1 ([0, ε] × {t} for
0 ≤ t ≤ 1 − ε) by moving the i1-th component of D1,n

through M, while all other components are fixed to stay in
the position of their respective component of the basepoint
u. Take a neighbourhood near ui1(−1 + ε) and push it
along the inverse-whisker ϕ−1

i1
, around a loop representing

g, and back along the whisker ϕi2 , stopping before any in-
tersection can occur. We say the disk is in pre-loop position.
To make sure that the arc is embedded at any stage, we
pick tubular neighbourhoods of all paths to ensure enough
space. A slice through part 3 is the exact inverse path,
ending at u. To describe part 2 , we consider a meridian
µx(S2) around the point x := ui2(−1 + 2ε). This means
the meridian 2-sphere bounds a meridian 3-ball µx(D

3) intersecting ui2 exactly once in x. For
(ε, 1− ε)×{0}, we foliate the meridian µx(S2) by a 1-family of 1-disks based at two fixed points
on the piece we previously pushed along ϕ−1

i1
· g · ϕi2 . In [KT23b, Theorem 4.21], this is fittingly

called “swinging a lasso”. For (ε, 1− ε)×{t}with 0 < t ≤ 1− ε, we analogously foliate spheres
with decreasing diameter, yet still based at two fixed points. This is done in such a way, that the
map is constant for t = 1− ε. In this sense, we foliate µx(D

3) by a 1-family of 2-spheres, each
sphere being foliated by a 1-family of 1-disks. Note that there exists exactly one point for which
the arc intersects ui2 once in x. In part 4 , we continuously undo the pushing along ϕ−1

i1
· g · ϕi2

such that the map is constantly u on I× {1}.
This defines an element r((i1, i2), g). For r(−((i1, i2), g)), we connect into the meridian 3-ball
µx(D

3) from the other side by pushing the arc around ui2 first. We then extend it linearly by
choosing disjointed supports and meridian balls. In the above description, this amounts to
varying ε accordingly.

We furthermore define the point-wise restriction of r to I× {0} as ∂r. The image is a loop in
Emb∂(D

1,n, M) based at u, giving an element in π1(Emb∂(D
1,n, M), u).

Theorem 29. The realisation map

r : Z[Tn × π1(M)] −→ π2(Imm∂(D
1,n, M), Emb∂(D

1,n, M), u).

as described above is the inverse of Dax as in Theorem 26.

Proof. We show that the realisation map is a right inverse to Dax, hence (Dax ◦ r)((i1, i2), g) =

((i1, i2), g) ∈ Z[Tn×π1(M)]. Since the latter is an isomorphism by Theorem 26, hence we then
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gb

ui1(−1)

ui2(−1)

∂M

x

ui2

FIGURE 12. On the left-hand side, r((i1, i2), g) evaluated at (1/2, 0). Following the whisker
ϕi1 to the basepoint b, around the π1-element g, then following ϕ−1

i2
, and half-way around

the meridian sphere µx(S2). On the right-hand side, the part around ui2 of r((i1, i2), g) eval-
uated on (1/2, t) for t ∈ [0, 1− ε]. The case i1 = i2 is also depicted in [KT23b, Figure 4.22].

can conclude that r is indeed an inverse to Dax. Let us choose ((i1, i2), g) ∈ Z[Tn × π1(M)],
and consider r((i1, i2), g) as defined above. Note that the meridian 3-ball µx(D

3) intersects ui2
exactly once and transversely in x. Thus, the only double point happens when the foliation
goes through the centre point of µx(D

3), namely x. This state is depicted in Figure 13.

gb

ui1(−1)

ui2(−1)

∂M

x

FIGURE 13. Ignoring whiskers, the dotted line represents the element obtained after ap-
plying Dax to r((i1, i2), g). Note that the intersection at x is transverse.

One can easily read off the element obtained after applying Dax. It is given by the homo-
topy class of ϕi1 · ϕ

−1
i1
· g · ϕi2 · ϕ−1

i2
, which is the same as g itself. Thus, the π1-element is the

correct one, and we only need to check the sign ±1 as the intersecting arcs corresponding to
(i1, i2) ∈ Tn obviously do not change. Recall, the sign εx ∈ {±1} is obtained from comparing
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the orientation of the tangent space T(⃗tx,x)(I
2 ×M) and

d ˜r((i1, i2), g)(T(⃗tx,x)(I
2 ×D1,n))⊕ d ˜r((i1, i2), g)(T(⃗tx,y)(I

2 ×D1,n))

with x and y being the two pre-images of the double point x of the track of r((i1, i2), g), given
as the map

˜r((i1, i2), g) : I2 ×D1,n︸ ︷︷ ︸
dimension 3

I2 ×M︸ ︷︷ ︸
dimension 6

sending (⃗t, v) to (⃗t, r((i1, i2), g)(⃗t)(v)).

We consider an open neighbourhood cube around the double point x ∈ M, modelled as R4. We
can choose coordinates such that the transverse intersection happens in the 2-plane R2×{0}×
{0} ⊆ R4, the two arcs modelled as the i2-sheet R× {0} × {0} × {0} and the i1-sheet {0} ×
R× {0} × {0}. In this chart, the derivate of the i1-sheet of r((i1, i2), g) applied to I× {0} ⊆ I2

yields the positive basis of I × {0} ⊆ I2 and the positive basis of {0} × {0} × {0} × R ⊆
R4. Applied to {0} × I ⊆ I2, we obtain the sum of the positive basis of {0} × I ⊆ I2 and
the positive basis of {0} × {0} × R × {0} ⊆ R4. The derivative of the i1-sheet applied to
D1

i2 yields the positive basis {0} ×R× {0} × {0}. The case of the i2-sheet is simpler, as ui2
is constant. We simply obtain the positive basis of I × {0} ⊆ I2 and the positive basis of
R × {0} × {0} × {0}. Using transpositions, we can compare the basis of the model to the
canonical basis of I2 ×R4 ⊆ I2 ×M and obtain a positive sign εx = 1. As a note, one can view
this as a choice of either left-hand or right-hand rule, comparing the bases of the tangent spaces.
If we consider r(−((i1, i2), g)), we previously said that we connect from “the other side”. This
exactly changes the left-hand rule to the right-hand rule and vice versa, hence the sign after
applying Dax is precisely the other one, in this case −1. We have shown that r is right-inverse,
and since Dax is known to be an isomorphism, it is the unique inverse. □

The fact that we have a realisation map as an inverse gives us a way to translate the algebraic
point of view back into the geometric one. This is going to be useful when identifying families
of arcs having certain algebraic properties.
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IV. CALCULATING HOMOTOPY GROUPS

In this section, we further study the long exact sequence of homotopy groups associated to
the pair (Imm∂(D

1,n, M), Emb∂(D
1,n, M)) of neat immersions and embeddings of multi-arcs

into a 4-manifold M. In particular, we begin with a discussion on the homotopy type of the
immersion space Imm∂(D

1,n, M), after which we study the map

δImm : π2(Imm∂(D
1,n, M), u) π2(Imm∂(D

1,n, M), Emb∂(D
1,n, M), u).

We further compare the homotopy types of the embedding Emb∂(D
1,n, M) and the mapping

space Map∂(D
1,n, M) yielding the following diagram which should be compared to [KT23a,

(3.7)].

Zn Z[Tn × π1(M)]

π2(Imm∂, u) π2(Imm∂, Emb∂, u) π1(Emb∂, u) π1(Imm∂, u)

π2(Map∂, u) π2(Map∂, Emb∂, u) π1(Emb∂, u) π1(Map∂, u)

∏n
i=1 π3(M) Z[π1(M)†,n)] ∏n

i=1 π2(M)

ι∗

p∗

pu

Dax r

δImm

δMap

∂

∂

p∗

pu

c

r Dax

daxu

Note that the cokernel of the map δImm is precisely the kernel of the surjection π1(Emb∂, u) −→
π1(Imm∂, u). We will build and analyse this diagram, which will lead to a proof of Theorem B.

IV.1. ON HOMOTOPY GROUPS OF IMMERSION SPACES

Lemma 30 ([KT23b, Lemma 4.26]). For a based space Y let f : Dk −→ Y be a based map, mapping
the basepoint e1 ∈ ∂Dk to the basepoint f (e1) = eY of Y. Then there are inverse homotopy equivalences

− f ∪∂ • : Map∂(D
k, Y; f ) Map∗(S

k, Y) ∼= ΩkY : f ∨ •

based for f and− f ∪∂ f . The map− f ∪∂ • sends an element d ∈ Map∂(D
k, Y; f ) to− f ∪∂ d : Sk −→

Y, gluing the two disks together on the common boundary, resulting in a sphere. The map f ∨ • sends
an element s ∈ Map∗(S

k, Y) to the pinch map

f ∨ s : Dk Dk ∨ Sk Y.
pinch f∨s

Remark 31. The same holds true if we extend the boundary condition on ∂Dk to one the collar
∂εDk. In that case, there is a homotopy equivalence Map∂ε(Dk, Y) ≃ ΩkY.



38 MAXIMILIAN HANS

We begin with a brief discussion on the homotopy groups of the immersion space Imm∂(D
1,n, M)

of immersions of multi-arcs into a compact, oriented, connected 4-manifold M. Hirsch-Smale
theory, see [Sma58], [Hir59] and [Sma59], yields a weak homotopy equivalence

D : Imm∂(D
1,n, M) Immf

∂(D
1,n, M)

given by f 7→ ( f , d f ). Since D1,n is compact, both spaces are of the homotopy type of CW-
complexes, and therefore it is a homotopy equivalence by Whitehead’s theorem. This follows
from work of Milnor in [Mil59]. The space Immf

∂(D
1,n, M) is the space of formal immersions,

meaning pairs ( f , T f ) with f : D1,n −→ M a continuous map and T f : TD1,n −→ f ∗TM a
monomorphism of tangent bundles. One can similarly require f to be smooth as the smooth
mapping space is homotopy equivalent to the continuous one. This is the first example of
the h-principle. Note that TD1,n ∼= D1,n × R is the trivial bundle. The data of an element
( f , T f ) ∈ f Immf

∂(D
1,n, M) is given by a commuting diagram

D1,n ×R TM

D1,n M
f

T f

and since the map T f is required to be a monomorphism, there is a homotopy equivalence
Immf

∂(D
1,n, M) ≃ Map∂(D

1,n, TM∖ s0(M)) with s0 : M −→ TM the zero-section. Since the
space T∖ s0(M) is homotopy equivalent to the sphere bundle STM, we get another homotopy
equivalence Immf

∂(D
1,n, M) ≃ Map∂(D

1,n, STM). Taking coproducts to products and applying
Lemma 30, we obtain

Imm∂(D
1,n, M) ≃ Map∂(D

1,n, STM) ∼= ∏n
i=1 Map∂i

(D1, STM) ∼= ∏n
i=1 Ωui(−1)STM.

Observe that each mapping space Map∂i
(D1, STM) is itself homotopy equivalent to the immer-

sion space Imm∂i(D
1, M) by applying Hirsch-Smale, hence we obtain the homotopy equival-

ence Imm∂(D
1,n, M) ≃ ∏n

i=1 Imm∂i(D
1, M). Immersion spaces do not increase in complexity

when considering multiple components, in contrast to embedding spaces. That is one reason
why the approach of comparing the homotopy type of the embedding space to the homotopy
type of the immersion space works well in our case of multi-disks.

Throughout this discussion generalised to k-multi-disks, we secretly identified V1(M), the (or-
thonormal) 1-frame bundle of the tangent bundle TM of M, with the sphere bundle STM. For
a more general discussion, we refer to the following corollary which summarises the previous
discussion, combining the Hirsch-Smale map with Lemma 30.

Lemma 32 ([KT23b, Corollary 4.27]). There is a homotopy equivalence

Du(•) := −D(u) ∪∂ D(•) : Imm∂(D
k, M) ΩkVk(M)

with Vk(M) being the total space of the orthonormal k-frame bundle of the tangent bundle of M.
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With the above discussion of taking coproducts to products, this immediately yields the fol-
lowing corollary.

Corollary 33. There is a homotopy equivalence

Du(•) := −D(u) ∪∂ D(•) : Imm∂(D
k,n, M) ∏n

i=1 ΩkVk(M).

Remark 34. Note that applying Lemma 30 component-wise yields different basepoints for the
loop space. In our case, we choose ui(−1). We suppress this in the upcoming notation, the
reader should be aware. Products of homotopy groups obtained from this equivalence have
accordingly changing basepoint. This can be uniformised by choosing whiskers, but it is going
to be helpful to keep the information of each individual basepoint.

The fibres of the bundle map STM −→ M are given by the sphere in 4-dimensional space, S3,
yielding the fibre bundle S3 −→ STM −→ M. This discussion allows for the computation of
the following homotopy groups.

Proposition 35. Let M be compact, oriented and connected 4-manifold. For any chosen basepoint
u ∈ Imm∂(D

1,n, M), we can compute the following homotopy groups.

− π1(Imm∂(D
1,n, M), u) ∼= ∏n

i=1 π2(M).

− π2(Imm∂(D
1,n, M), u) can be expressed a group extension of Zn by ∏n

i=1 π3(M). This means that
there is a short exact sequence

Zn π2(Imm∂(D
1,n, M), u) ∏n

i=1 π3(M)

of abelian groups.

Proof. We apply the above discussion on results due to Hirsch and Smale. For the first case,
notice that we have isomorphisms π1(ΩSTM) ∼= π2(STM) ∼= π2(M), where the latter one
is obtained from the long exact sequence of homotopy groups associated to the fibre bundle
S3 ι−→ STM −→ M. For the second result, we consider the product fibre bundle

∏n
i=1 S3 ∏n

i=1 STM ∏n
i=1 Mι

which yields the desired short exact sequence. Indeed, the map ι∗ : π3(S3) −→ π3(STM)

is clearly injective as every fibre bundle admits a section (the zero-section), hence we obtain
an injection Zn ↣ π3(∏n

i=1 STM) ∼= π2(∏n
i=1 ΩSTM) ∼= π2(Imm∂(D

1,n, M), u) by taking the
product. □
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IV.2. ANALYSING THE COMPOSITION MAP

So far, we collected the data in the following diagram

Zn Z[Tn × π1(M)]

π2(Imm∂, u) π2(Imm∂, Emb∂, u) π1(Emb∂, u) π1(Imm∂, u)

∏n
i=1 π3(M) ∏n

i=1 π2(M)

c

ι∗ r

δImm

Dax

∂

∼=

and we will analyse the map c : Zn −→ Z[Tn × π1(M)] given by the composition Dax ◦ δImm ◦

ι∗. Considering the previous discussion together with the proof of Proposition 35, we can look
at each component at once and follow [KT23b, Proposition 4.30].

Proposition 36. The composition map c sends ej ∈ Zn to ((j, j), e) with e ∈ π1(M) being the trivial
group element.

Proof. Let us consider the j-th component in the product fibre bundle. As before, this is just
the fibre bundle S3 ι−→ STM

p−→ M. This is locally trivial, for each interior point x ∈ M, there
exists a neighbourhood U ∼= D4 around x such that p−1(U) ∼= U × S3 ∼= D4 × S3. Points
on the boundary work the same but one takes the half-plane. The inclusion ι : S3 −→ STM
then factors as ι : S3 −→ D4 × S3 −→ STM. Applying the loop space Ω preserves fibration
sequences, and we obtain the following factorisation.

Zn ∼= ∏n
i=1 π2(ΩS3) ∏n

i=1 π2(ΩSTM) ∼= π2(Imm∂(D
1,n,M), u)

∏n
i=1 π2(Ω(S3 ×D4))

ι∗

∼=

This way, we can assume M = D4 for the rest of the proof. Note that in this case, both ι∗
and Dax are isomorphisms. By definition, ι∗(ej) is given by the homotopy class of a a map
F : S2 −→ Imm∂(D

1,n, D4) ∼= ∏n
i=1 Imm∂i(D

1, D4) such that the composition

Du ◦ F : S2 Imm∂(D
1,n, D4) ∏n

i=1 Ω(S3 ×D4)F Du

generates exactly the j-th component of π2(∏n
i=1 Ω(S3 ×D4)) ∼= ∏n

i=1 π2(Ω(S3 ×D4)) ∼= Zn.
On homotopy groups, the latter is given by a section of ι∗, which already is an isomorphism.
Thus, it suffices to construct a map F : S2 −→ Imm∂(D

1,n, D4) based at u, representing an
element in π2(Imm∂(D

1,n, D4), u) with image ((j, j), e) under the isomorphism Dax. We want
to make use of our realisation map r : Z[Tn×{e}] −→ π2(Imm∂(D

1,n, D4), Emb∂(D
1,n, D4), u)

from Theorem 29, but the boundary conditions of r((i, i), e) do not match the requirements of
F as the part I× {0} does not get sent to the basepoint u. Therefore, we need to find a family
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of isotopies from r((j, j), e) evaluated on (t, 0) ∈ I× {0} to u. The isotopy described above by
“pulling tight” slides

Let us define such a map F : I2 −→ (Imm∂(D
1,n, D4), u). For the upper half of the square, we

take the realisation map. For the lower half of the square, we now describe the family of iso-
topies from F(t, 1/2) = r((j, j), e)(t, 0) to F(t, 0) = u. Firstly, consider the state r((j, j), e)(1/2, 0)
as depicted on the left side in Figure 14, once again ignoring the back-and-forth movement
along the whiskers, as this is trivial upon taking homotopy classes. We describe the isotopy by
“pulling tight” as seen throughout Figure 14.

−→
1

−→
2

y 3

←−
5

←−
4

αN

µx(D
2)

x

FIGURE 14. Describing the “pulling tight” isotopy to the basepoint u.

Consider r((j, j), e)(ε, 0), the state of the arc being pushed into position before swinging around
the meridian 2-sphere, previously denoted as “pre-loop” position. This is depicted as the state
αN in Figure 14. We compare it to the state r((j, j), e)(1/2, 0), the arc swung around the sphere
half-way. Taking the set-wise symmetric difference of r((j, j), e)(ε, 0) and r((j, j), e)(1/2, 0) yields
a 1-sphere which bounds a 2-disk µx(D

2) whose interior intersects the arc only in x. Note that
this is precisely the disk seen on the right-hand side of Figure 12, foliated by a family of arcs. We
start with an isotopy which drags the part on the left-hand side of x through µx(D

2), pulling
away the point x. This is depicted in 1 and 2 . Note that this part of the arc naturally winds
around a π1-element by construction. Since we consider the trivial element, this motion is not
obstructed and indeed defines an isotopy. The next step is to push the part swung half way
around the meridian sphere µx(S2) to the state αN . This can be done by using the guiding disk
µx(D

2) since we moved the point x away earlier. This is depicted in 3 . The steps 4 and 5

are now obvious isotopies, pushing the arc down into the position of uj, again using that there
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is no π1-element obstructing the motion. Since we only considered the j-th component, and all
the other components are in the basepoint configuration by assumption, this yields a path from
r((j, j), e)(1/2, 0) to u through embeddings.

Before we discuss how to obtain a family version of the “pulling tight” isotopy, let us mention
why Figure 14 is accurate. Indeed, D4 is simply-connected and hence we cannot find any
π1-obstruction. It could happen that the j-th arc wraps around another arc uk in basepoint
configuration in order to reach the pre-loop position αN . In this case, the dimensionally reduced
picture does not hold anymore, since we cannot pull the arc through the disk µx(D

2) without
intersecting uk. In dimension four, this works by using a smooth bump function, dipping the
arc into the 4th dimension, to circumvent the intersection. This is the same phenomenon as any
knot S1 ↪→ D4 being isotopic to the unknot. The alternative, and admittedly much easier, way
is to just decrease the radius to obtain the pre-loop position αN , such that the j-th arc “dips”
under the arc uk.

To obtain a family version without creating any double points (this would change the value
of Dax), we taper off the remaining dimension using smooth bump functions. Then we use
the analogous isotopy. The only difference is that the 2-disk whose boundary is the set-wise
symmetric difference of r((j, j), e)(ε, 0) and r((j, j), e)(t, 0) for some t ∈ [0, 1] does not intersect
the arc in the point x. That is not a problem, we can similarly isotope the arc to the basepoint
configuration. Hence, we have found a family of isotopies from r((j, j), e) to u, not introducing
any new double points. The map F : I2 −→ (Imm∂(D

1,n, D4), u) obtained from gluing the
upper and lower half of the square accordingly, only has the double point coming from the
realisation map. Hence, applying Dax yields precisely ((j, j), e), which had to be shown. □

We are now in an excellent position to analyse the diagram stated in the beginning of this
section. The discussion will quickly conclude in a proof of Theorem B.

Proof of Theorem B. Consider the following subsets of Tn. The diagonal set ∆n := {(i, j) ∈
Tn : i = j} and the hollow diagonal set ∆h

n := {(i, j) ∈ Tn : i ̸= j}. We define π1(M)†,n :=
∆n× (π1(M)∖{e})∪∆h

n×π1(M) as the subset of Tn×π1(M) that ignores trivial fundamental
group elements on the diagonal.

Remark 37. The reader should think about piercing the set Tn × π1(M) with a dagger, remov-
ing the neutral π1-element along the diagonal.

With this notation at hand, we have

Z[π1(M)†,n] ∼= Z[Tn × π1(M)]/im(c)
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and after furthermore comparing the homotopy type of the embedding space to the homotopy
type of the smooth mapping space, we obtain the following diagram.

Zn Z[Tn × π1(M)]

π2(Imm∂, u) π2(Imm∂, Emb∂, u) π1(Emb∂, u) π1(Imm∂, u)

π2(Map∂, u) π2(Map∂, Emb∂, u) π1(Emb∂, u) π1(Map∂, u)

∏n
i=1 π3(M) Z[π1(M)†,n)] ∏n

i=1 π2(M)

ι∗

p∗

pu

Dax r

δImm

δMap

∂

∂

p∗

pu

c

r Dax

daxu

The map daxu : ∏n
i=1 π3(M) −→ Z[π1(M)†,n] is defined as the composition Dax ◦ δMap ◦ p−1

u .
Alternatively, one can pick a section s of the surjection p∗, and then consider the composition
Dax ◦ δImm ◦ s ◦ p−1

u . Its image lies in Z[π1(M)†,n] ⊆ Z[Tn × π1(M)]. This leads to a proof of
Theorem B. Namely, there is a central group extension

Z[π1(M)†,n]/im(daxu) π1(Emb∂(D
1,n, M), u) ∏n

i=1 π2(M).
∂r

Dax

By the identifications π1(Imm∂(D
1,n, M), u) ∼= π1(Map∂(D

1,n, M), u) ∼= ∏n
i=1 π2(M), the sub-

group πD
1 (Emb∂(D

1,n, M), u) of π1(Emb∂(D
1,n, M), u), consisting of loops of embeddings that

are null-homotopic in the immersion or equivalently mapping space, is isomorphic to the
abelian group Z[π1(M)†,n]/im(daxu). The inclusion map

πD
1 (Emb∂(D

1,n, M), u) π1(Emb∂(D
1,n, M), u)

is given by ∂r which is defined as the point-wise restriction of the realisation map r to I× {0}.
This amounts to the composition

∂r((i1, i2), g) : I I2 (Imm∂(D
1,n, M)Emb∂(D

1,n, M), u)
−×{0} r((i1,i2),g)

and since r((i1, i2), g) defines an element in the relative homotopy group, the image lies entirely
in Emb∂(D

1,n, M). To give a full description of πD
1 (Emb∂(D

1,n, M), u), we need to trace through
the definition of daxu and identify its image.

Remark 38. In the case of n = 1, the map daxu not only appears in the work Kosanović and
Teichner but also in the work of Gabai in [Gab21] (with daxu denoted as d3 there). Gabai calls
the image im(daxu) the “Dax kernel”.

Given an element [ f ] ∈ ∏n
i=1 π3(M), we now describe how to calculate daxu([ f ]). Firstly, we

consider each component separately, fi : (I3, ∂I3) −→ (M, ui(−1)). We remind the reader
of Remark 34, stating that the basepoint in the product changes. As π2(Imm∂(D

1,n, M), u) ∼=
∏n

i=1 π2(Imm∂i(D
1,n, M), ui) splits as a product, we can lift each fi to a map Fi : (I2, ∂I2) −→
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(Imm∂i(D
1, M), ui) by taking any section of the map π2(Imm∂i(D

1, M), ui) ↠ π3(M, ui(−1)).
Namely, for [ fi] ∈ π3(M, ui(−1)), we consider elements L fi : (I2, ∂I2) −→ (Imm∂i(D

1, M))

and Lui : (I2, ∂I2) −→ (Imm∂i(D
1, M)) with Lui (⃗t) = ui such that the adjoint of L fi ∪∂I2 Lui

represents the element [ fi]. Then one computes the geometric Dax-invariant and daxu([ fi]) is
characterised by the equation

Dax([Fi]) = N (Fi) + daxu([ fi])

with N (Fi) being the trivial group elements. Thus, daxu([ fi]) are exactly the non-trivial group
elements under the image of Dax. By additivity of Dax, we have

daxu([ f ]) = ∑n
i=1 daxu([ fi]) ∈ Z[π1(M)†,n].

Example 39. The short exact sequence appearing in Theorem B detects the following phe-
nomenon. Let M be a simply-connected 4-manifold M with π3(M) (or vanishing daxu), and
let n = 1. In this case, by the exact sequence, there is an isomorphism π1(Emb∂(D

1, M), u) ∼=
π1(Map∂(D

1, M), u). For each homotopy class of a 1-parameter loop of maps from D1 into M,
there is exactly one isotopy class of a 1-parameter loop of embeddings from D1 into M. Now
suppose n = 2. Then the exact sequence reduces to

Z π1(Emb∂(D
1,2, M), u) π1(Map∂(D

1,2), u)

and for each homotopy class of a 1-parameter loop of maps from D1,2 into M, there are countably
many isotopy classes of a 1-parameter loop of embeddings from D1,2 into M. In particular, the
last sentence holds for every 4-manifold M.
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V. FORGETTING AUGMENTATIONS

In this section we tie up loose ends from Section II. Namely, for a d-dimensional, compact,
oriented, connected manifold M, we study the map

Embε
∂ε(Dk,n, M) Emb∂ε(Dk,n, M)

ev0

forgetting the ε-augmentation. We refer the reader to Section II for the definition of ε-augmented
embedding spaces. We will see that we obtain a fibration sequence which allows us to split off
a Zn-factor on the relevant homotopy groups.

V.1. A FIBRATION SEQUENCE

The way one should think about the added datum coming from the ε-augmentation is in the
form of a normal vector field of the multi-disk Dk,n. In that formulation, it comes to no surprise
that it is similar to the case of n = 1 which has been dealt with by Kosanović and Teichner
in [KT23b, Section 5]. We formalise this observation. Let us fix a Riemannian metric on an
oriented, connected, compact d-manifold M. As always, we assume that M has non-empty
boundary. The choice of the metric is unique up to homotopy, as the space of Riemannian
metrics is known to be convex, and hence contractible as soon as it is non-empty. It is non-
empty because Riemannian metrics exist locally on charts. Consider the space Emb↑∂(D

k,n, M)

of neat embeddings together with a normal vector field. Furthermore, assume that ε is smaller
than the injectivity radius of the metric on M by compactness.

Proposition 40. The embedding spaces Embε
∂ε(Dk,n, M) and Emb↑∂(D

k,n, M) are homotopy equival-
ent.

Proof. The proof is the same as the one of [KT23b, Proposition 5.1] which is the case n = 1. Let
us consider the map

Embε
∂ε(Dk,n, M) Emb↑∂(D

k,n, M)D↑

which is given by sending an embedding of Dk,n× [0, ε] to the restricted embedding Dk,n×{0}
together with the unit derivative in direction of [0, ε] as a normal vector field. By Theorem 4,
both maps

− ev0 : Embε
∂ε(Dk,n, M) −→ Emb∂ε(Dk,n, M) and

− proj↑ : Emb↑∂(D
k,n, M) −→ Emb∂ε(Dk,n, M)
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are fibrations. The unit derivative mapD↑ yields a commutative diagram of fibration sequences

ev−1
0 (u) Embε

∂ε(Dk,n, M) Emb∂ε(Dk,n, M)

proj↑
−1
(u↑) Emb↑∂(D

k,n, M) Emb∂ε(Dk,n, M)

ev0

D↑

proj↑

and we show that the fibres agree up to homotopy equivalence via D↑ restricted on fibres.
In that case, the unit derivative map D↑ : Embε

∂ε(Dk,n, M) −→ Emb↑∂(D
k, M) is a homotopy

equivalence. We start with identifying proj↑
−1
(u↑). Let u↑ := D↑(uε) be the basepoint in the

lower-right embedding space of the diagram. By definition, proj↑
−1
(u↑) is the space of normal

vector bundles that agree with u↑ on a fixed collar of ∂Dk,n. Alternatively, it is the section
space Γ∂ε(Sνu) of the sphere bundle Sνu agreeing with u↑ on the fixed collar of Dk,n. We give a
homotopy inverse to D↑ restricted to the fibres via the exponential map on the normal bundle.
This relates the normal bundle νu to a sufficiently small open disk bundle of u in M, a tubular
neighbourhood. Given a unit normal vector field ξ ∈ Γ∂ε(Sνu), we define the embedding
Expu(ξ) : Dk,n × [0, ε] ↪→ M as Expu(ξ)(v, t) := exp(t · ξ(v)). This is well-defined since we
have assumed the injectivity radius of the metric on M to be larger than ε. Clearly, Expu is a
right-inverse toD↑ by definition. To show thatD↑ and Expu are homotopy inverses, we need to
construct a homotopy from Expu ◦D↑ to the identity in ev−1

0 (u). Given E : Dk,n × [0, ε] ↪→ νu,
we define Hs(v, t) := E (v,s·t)

s for s ∈ I. This way, we obtain H1 = E , and H0 is the normal
derivative of E at (v, 0). □

Lemma 41. The section space Γ∂ε(Sνu) is homotopy equivalent to ∏n
i=1 ΩkSd−k−1.

Proof. Let us consider a trivialisation Sνu ∼= Dk,n × Sd−k−1 of the sphere bundle of the normal
bundle of u in M. On the section space Γ(Sνu) (without any boundary restrictions), this induces
a homeomorphism onto the mapping space Map(Dk,n, Sd−k−1) ∼= ∏n

i=1 Map(Dk, Sd−k−1) as in
the beginning of Section IV. The subspace Γ∂ε(Sνu) ⊆ Γ(Sνu) is the space of sections that agree
with u↑ on ∂ε, hence under the identification with Map(Dk,n, Sd−k−1), we obtain

Γ∂ε(Sνu) ∼= Map∂ε(Dk,n, Sd−k−1) ∼=
n

∏
i=1

Map∂ε
i
(Dk, Sd−k−1) ≃

n

∏
i=1

ΩkSd−k−1

after applying Lemma 30 in the form of Remark 31. □

Proposition 40 together with Lemma 41 yields a fibration sequence

∏n
i=1 ΩkSd−k−1 Embε

∂ε(Dk,n, M) Emb∂ε(Dk,n, M).
ev0

From now on, we go back to the setting of arcs in a 4-manifold. In this case, the fibre space is
∏n

i=1 ΩS2, giving the fibration sequence

∏n
i=1 ΩS2 Embε

∂ε(D1,n, M) Emb∂ε(D1,n, M).
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The inclusion Emb∂ε(D1,n, M) ↪→ Imm∂ε(D1,n, M) induces a map

Duε Emb↑∂ε(D1,k, M) Map∂(D
1,n, V2(M)) ≃ ∏n

i=1 ΩV2(M)

via the Hirsch-Smale derivative, such that the diagram of fibration sequences

∏n
i=1 ΩS2 Emb↑∂(D

1,n, M) Emb∂ε(D1,n, M)

∏n
i=1 ΩS2 ∏n

i=1 ΩV2(M)) Imm∂ε(D1,n, M)

ev0

Duε

commutes. Recall, Vℓ(M) is defined as the total space of the orthonormal ℓ-frame bundle
Vℓ(M) := Vℓ(TM) −→ M of the tangent bundle of M. We want to show that the upper se-
quence yields a short exact sequence that splits after applying the fundamental group. To do
so, we show that the lower sequence admits such a splitting.

Firstly, let us confirm that we indeed do get short exact sequences. For this, let us collect a num-
ber of observations. The Hirsch-Smale map yields a homotopy equivalence Imm∂ε(D1,k, M) ≃
∏n

i=1 ΩSTM ∼= ∏n
i=1 ΩV1(M). Since we deal with a product fibration after applying the loop

space functor, we can similarly study the sequence

S2 V2(M) V1(M) ∼= STM.

For V2(M) and V1(M), there are fibration sequences

− V1(R
4) −→ V1(M) −→ M

− V2(R4) −→ V2(M) −→ M

and we can identify the Stiefel manifold V1(R
4) ∼= O(4)/O(3) with S3. The Stiefel manifold

V2(R4) of orthonormal 2-frames can be canonically identified with the sphere bundle of the
tangent bundle of V1(R

4) ∼= S3. This is one of the rare occasions for which being in dimension
4 is convenient. Namely, viewing S3 ⊆H as a subset of the quaternions gives S3 the structure of
a Lie group which can be identified with SU(2). Hence, the tangent bundle of S3 is trivial, and
we obtain the identification V2(R4) ∼= S3 × S2. Combining the two fibration sequences above
with the comparison of V2(M) and V1(M) yields the following diagram of fibration sequences
which trivially commutes.

S2 S3 × S2 S3

S2 V2(M) STM

∗ M M

ι
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Let us apply the functor π2(−) on the diagram and extend it horizontally once by considering
the long exact sequence of homotopy groups associated to the fibration sequences.

Z Z Z 0

π3(STM) Z π2(V2(M)) π2(STM)

π3(M) 0 π2(M) π2(M)

0

̸=0

ι∗

0

D

We reason as follows. The map ι∗ : Z → Z must be an isomorphism since it comes from
the inclusion ι : S2 ↪→ S3 × S2. Hence the preceding connecting map Z −→ Z must be 0
by exactness. The map Z −→ π3(STM) is clearly non-zero as it is obtained from the fibre-
inclusion S3 ↪→ STM as discussed before. Therefore, the connecting map π3(STM) −→ Z

must be 0 by commutativity of the diagram. This implies that both maps Z −→ π2(V2(M))

must be injective. The maps π2(V2(M)) −→ π2(M) and π2(V2(M)) −→ π2(STM) must be
surjective since π1(S

3) ∼= π1(S
3× S2) = 0. They agree by the identification of the Hirsch Smale

derivative. This discussion immediately gives rise to a commutative diagram

Zn π1(Embε
∂ε(D1,n, M), uε) π1(Emb∂ε(D1,n, M), u)

Zn π1(Emb↑∂(D
1,n, M), u↑) π1(Emb∂ε(D1,n, M), u)

Zn ∏n
i=1 π2(V2(M)) ∏n

i=1 π2(STM)

D↑∗

Duε∗ D∗

which yields the desired short exact sequences. For the splitting of one of the upper short exact
sequences, we need to show that the lower short exact sequence admits a splitting. This is the
content of the next subsection.

V.2. SPLITTING HOMOTOPY GROUPS OF ORTHONORMAL FRAME BUNDLES

It is a classical result due to Hirzebruch and Hopf that every closed oriented 4-manifold admits
a Spinc-structure. In [VT], Teichner and Vogt extended this result to all oriented 4-manifolds,
hence dropping the condition of the manifold being closed. We will make use of this fact to
obtain a splitting of the short exact sequence

Z π2(V2(M)) π2(M)

via a retraction constructed in [KT23b].

The second Stiefel-Whitney class ω2(M) ∈ H2(M; Z/2) of the tangent bundle of M comes
from pulling back the unique generator ω2 of H2(BO(4); Z/2) along the classifying map TM :
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M −→ BO(4). Equivalently, one can post-compose with the non-trivial map BO(4) −→
K(Z/2, 2). Since we assume that M is oriented, its tangent bundle carries a canonical ori-
entation and we can similarly consider maps into BSO(4).

Definition 42. We define the second spherical Stiefel-Whitney class ωs
2(M) of M as the image of

ω2(M) under the canonical map H2(M; Z/2) −→ Hom(H2(M; Z), Z/2) pre-composed with
the Hurewicz map π2(M) −→ H2(M; Z). Therefore, we view the second spherical Stiefel-
Whitney class as a map ωs

2(M) : π2(M) −→ Z/2.

An alternative viewpoint is to consider the fibration sequence SO(4) −→ Fr(M) −→ M.
Since π1(SO(4)) ∼= Z/2, the long exact sequence of homotopy groups has a connecting map
π2(M) −→ Z/2. This agrees with the second spherical Stiefel-Whitney class as defined above.

We can easily relate the second spherical Stiefel-Whitney class of M to the second (ordinary)
Stiefel-Whitney class of M̃, the universal covering of M. This is the content of the following
lemma.

Lemma 43. Let M be an oriented, connected smooth 4-manifold. Then the second spherical Stiefel-
Whitney class ωs

2(M) agrees with ω2(M̃).

Proof. Note that π1(M̃) vanishes by construction, hence H2(M̃; Z/2) ∼= Hom(H2(M̃; Z), Z/2)
since the Ext1-term vanishes in the short exact sequence of the universal coefficient theorem.
Hence, the second Stiefel-Whitney class ω2(M̃) can be seen as a map ω2(M̃) : π2(M̃) −→ Z/2
after applying the Hurewicz theorem. In particular the second spherical Stiefel-Whitney class
of M̃ is the second Stiefel-Whitney class of M̃. Let us consider the covering map p : M̃ −→
M. By naturality of the universal coefficient theorem, we obtain the following commutative
diagram of short exact sequences.

Ext1(H1(M; Z), Z/2) H2(M; Z/2) Hom(H2(M; Z), Z/2)

0 H2(M̃; Z/2) Hom(H2(M̃; Z), Z/2)

p∗ f 7→ f ◦p∗

Since the Stiefel-Whitney classes are natural, the map p∗ maps ω2(M) to ω2(M̃). As previously
discussed, we identify H2(M̃; Z) and π2(M̃) via the Hurewicz isomorphism, and furthermore
π2(M̃) with π2(M) by the fact that higher homotopy groups behave well with taking the uni-
versal cover. By following the surjection on the top row, and post-composing with p∗, we
therefore indeed obtain the second spherical Stiefel-Whitney class. Since the right arrow on the
bottom row is an isomorphism, this yields the identification ω2(M̃) = ωs

2(M). □

Remark 44. On a side note, the kernel of the map p∗ : H2(M; Z/2) −→ H2(M̃; Z/2) can be
easily identified by considering the Serre spectral sequence associated to the fibration sequence

M̃ M K(π1(M), 1).
p q
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We apply Z/2-coefficients. Namely, there is an edge-homomorphism

H2(M; Z/2) E0,2
∞ E0,2

2 H2(M̃; Z/2)

p∗

that agrees with the map p∗ : H2(M; Z/2) −→ H2(M̃; Z/2). To compute the kernel of p∗,
we need to determine the kernel of this composition. As the second map is injective, this is
simply given by the kernel of H2(M; Z/2) ↠ E0,2

∞ which can be read off from the filtration
along the anti-diagonal. Since M̃ is simply-connected, the (p, 1)-row on the E2-page vanishes,
hence on the E∞-page as well. Therefore, the filtration on the anti-diagonal is given as 0 ⊆
H2(K(π1(M), 1); Z/2) ⊆ E0,2

∞ . We have an isomorphism

H2(M; Z/2) ∼= E0,2
∞ /H2(K(π1(M), 1); Z/2)

and the kernel of the map p∗ : H2(M; Z/2) −→ H2(M̃; Z/2) can be identified with the abelian
group H2(K(π1(M), 1); Z/2).

As mentioned before, Teichner and Vogt showed in [VT] that any oriented 4-manifold admits
a Spinc-structure, in particular M̃ does. This means that ω2(M̃) is in the image of the homo-
morphism H2(M̃; Z) −→ H2(M̃; Z/2). The commutative diagram

H2(M̃; Z) H2(M̃; Z/2)

Hom(H2(M̃), Z) Hom(H2(M̃; Z), Z/2)mod 2

shows that a given Spinc-structure of M̃ results in a lift

π2(M) Z/2

Z

ωs
2(M)

c
mod 2

after applying Lemma 43 and the identifications π2(M) ∼= π2(M̃) ∼= H2(M̃; Z) as discussed
before. The reason why we discussed spherical Stiefel-Whitney classes is the following propos-
ition.

Proposition 45 ([KT23b, Proposition B.14]). Splittings η : π2(V2(M)) −→ Z are in bijection with
integer lifts of the second spherical Stiefel Whitney class ωs

2(M).

Therefore, we always obtain splittings of the short exact sequence

Z π2(V2(M)) π2(M).

η
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These splittings depend on the choice of the Spinc-structure of the universal covering M̃. The
fact that a Spinc-structure on M̃ induces a splitting is mentioned in [KT23a, Section 2.3] without
a proof. A chosen splitting η of this sequence then lifts to a splitting of all horizontal sequences

Zn π1(Embε
∂ε(D1,n, M), uε) π1(Emb∂ε(D1,n, M), u)

Zn π1(Emb↑∂(D
1,n, M), u↑) π1(Emb∂ε(D1,n, M), u)

Zn ∏n
i=1 π2(V2(M)) ∏n

i=1 π2(STM)

η×n

η̃×n

˜̃η×n

D↑∗

Duε∗ D∗

after identifying π2(STM) with π2(M) via the Hirsch-Smale derivative, and passing to products.
This way, we can split the Zn-factor off and obtain an isomorphism

π1(Embε
∂ε(D1,n, M), uε) ∼= Zn × π1(Emb∂ε(D1,n, M), u).

Proof of Theorem C. We will now tie up the loose ends to obtain a proof of Theorem C, clas-
sifying isotopy classes of neat multi-disks in 4-manifolds in the presence of a geometric dual
link. Namely, let M be a 4-dimensional, compact, oriented, connected manifold with non-
empty boundary ∂M. Consider an n-component link ℓ : S1,n ↪→ ∂M together with a geometric
dual link G : S2,n ↪→ ∂M. We recall the results we have collected so far. In the setting with a
dual, Theorem A yields an isomorphism on homotopy groups

π0(Embℓ(D
2,n, M), U) π0(Embℓε(D2,n, M), U) π1(Embε

uε
0
(D1,n, MG), uε).Lemma 9

∼=
Theorem A

∼=

The manifold MG is obtained from M by attaching a collection h3,n of 3-handles to the geometric
dual link. Furthermore, the observations from the preceding subsections on forgetting the ε-
augmentation together with Lemma 9 yields an isomorphisms

π1(Embε
uε

0
(D1,n, MG), uε) Zn × π1(Embu0(D

1,n, MG), u).
∼=

Combining this discussion with Theorem B, we obtain a short exact sequence of sets

Z[π1(MG)
†,n]/daxu(MG) π0(Embℓ(D

2,n, M), U) Zn ×∏n
i=1 π2(MG).

∂r

Dax

Note that π0(Embℓ(D
2,n, M), U) can be endowed with a group structure via the delooping

coming from Theorem A.
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