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Abstract

In 1978, Birman and Craggs published a paper in which they established a collection of homo-

morphisms I(Σg) → Z/2Z, called the Birman-Craggs homomorphisms. We follow [BC78], omitting

some details and enriching the text where we find it to be appropriate.

1 Preliminaries

The map Ψ : Mod(Σg) → Aut(H1(Σg;Z)) sending [f ] to f∗ yields a surjective representation into the

symplectic group Sp(2g,Z) as the intersection form is preserved.

Lemma 1.1. Let f ∈ Mod(Σg) and Ψ(f) be given by the following symplectic matrix.

Ψ(f) =

[
R S

P Q

]

Then Mg(f) = Hg ∪f Hg is an integer homology sphere if and only if S is unimodular over Z.

Proof. This lemma can be found in [BC78, Lemma 2], although Birman and Craggs do use a different

ordering of the basis elements. A proof is not given, so we provide one. We must only show that

H1(Mg(f);Z) is trivial if and only if S is unimodular, then the claim follows by Poincaré Duality and

the Universal Coefficient Theorem. Consider the Mayer-Vietoris sequence for the canonical pushout.

Σg Hg

Hg Mg(f)

f

i

qHg

qHg

In the pushout, we include i : Σg ↪→ Hg in a canonical way. On the level of homology, this is

given by the map i∗ :
⊕2g

j=1 Z →
⊕g

j=1 Z which is dropping all the generators ai, as they are trivial in

H1(Hg;Z). As f ∈ Mod(Σg), the induced map on homology is an automorphism on
⊕2g

j=1 Z. Abusing
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notation, we post-compose with the inclusion and obtain the induced map f∗ :
⊕2g

j=1 Z →
⊕g

j=1 Z.
The Mayer-Vietoris sequence goes as follows.

0 Z 0 H2(Mg(f);Z)

⊕2g
j=1 Z

⊕2g
j=1 Z H1(Mg(f);Z)

Z Z⊕ Z H0(Mg(f);Z) 0

Firstly, observe that H1(Mg(f);Z) is trivial if and only if the map
⊕2g

j=1 Z →
⊕2g

j=1 Z given by i∗⊕f∗

is an isomorphism. We will now study this map. For that, we take the standard basis of H1(Σg;Z).

a1 = e1, . . . , ag = eg,

b1 = eg+1, . . . , bg = e2g

As the generators ai are being dropped, we only need to consider what happens to the generators bi.

The map i∗ leaves the generators bi invariant. This is a basis for
⊕2g

j=g+1 Z. Matrix multiplication

yields the following result.

Ψ(f)(b1) =



s11
...

s1g

q11
...

q1g


, Ψ(f)(b2) =



s21
...

s2g

q21
...

q2g


, . . . , Ψ(f)(bg) =



sg1
...

sgg

qg1
...

qgg


As the last g entries are already covered by the inclusion i∗, the map is an isomorphism if and only

if the matrix S is invertible. As we are working over the ring Z, this is given if and only if S has

determinant ±1. This concludes the proof.

Definition 1.2 (Torelli group). Consider I(Σg) := ker(Ψ). This forms a normal subgroup of

Mod(Σg) and we call it the Torelli group of Σg. This yields the following short exact sequence.

1 → I(Σg) → Mod(Σg)
Ψ−→ Sp(2g,Z) → 1

Theorem 1.3. Let S3 = Hg ∪f Hg be a Heegaard splitting, k ∈ I(Σg). Then the closed oriented

3-manifold defined by Mg(k ◦ f) = Hg ∪k◦f Hg is an integer homology sphere.

Proof. Any Heegaard splitting can be described as a pushout. Naturally, we can apply the Mayer-

Vietoris sequence. Since k is an element of the Torelli group, we know that the induced map in
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homology, k∗, is trivial. This immediately gives us (k ◦ f)∗ = k∗ ◦ f∗ = id ◦ f∗ = f∗ and the resulting

Mayer-Vietoris sequence of both pushouts

Σg Hg Σg Hg

Hg S3 Hg Mg(k ◦ f)

i

f qHg

qHg

i

k◦f

q′Hg

q′Hg

is the same, thus H•(Mg(k ◦ f);Z) ∼= H•(S
3;Z). We abuse notation here, as both f and k ◦ f map

into ∂Hg.

2 The Birman-Craggs Homomorphisms

Definition 2.1 (Heegaard embedding). Let M be a closed oriented 3-manifold. A Heegaard embed-

ding is a smooth embedding i : Σg → M such that the image is a Heegaard surface. This means

i(Σg) splits M into two handlebodies with the embedded Σg as its boundary. This gives us a resulting

attaching map f ∈ Mod(Σg), hence M is given by the Heegaard splitting M ∼= Mg(f) = Hg ∪f Hg.

Figure 1: A Heegaard embedding Σ1 ↪→ S3 on the left, an embedding Σ1 ↪→ S3 which is no Heegaard

embedding on the right.

Definition 2.2 (Birman-Craggs Homomorphisms). Let Mg(f) be an integer homology sphere ob-

tained from a Heegaard embedding for g ≥ 2. Define ρf : I(Σg) → Z/2Z by

k 7→ µ(Mg(k ◦ f))− µ(Mg(f)) mod 2

measuring the change in the Rokhlin invariant. We call those maps Birman-Craggs homomorphisms.

At this point, it is everything but obvious that this truly defines a collection of homomorphisms from

the Torelli group to Z/2Z. We will need more results for the proof.

Definition 2.3 (Map pairs and fundamental triple). Let (f1, f2) ∈ Mod(Σg) ×Mod(Σg) be a map

pair. Each map pair defines a triple of closed oriented 3-manifolds (Mg(f2),Mg(f1),Mg(f2 ◦ f−1
1 ))

which we call the fundamental triple for (f1, f2).
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We now want to associate a map pair with a 4-manifold W such that the following holds.

∂W = −Mg(f2)⨿Mg(f1)⨿Mg(f2 ◦ f−1
1 )

Definition 2.4. We construct such a manifold. Consider three disjoint copies W1,W2,W3 of the

4-manifold Hg× [−1, 1] and denote ej : Hg× [−1, 1] → Wj as the identity maps. We can orientate the

manifolds Wj in such a way that Hg → Hg×{1}
ej−→ Wj is an orientation preserving homeomorphism

for j = 1, 2 and orientation reversing for j = 3. We define the following equivalence relation ∼ on the

3-manifolds ej(Σg × [−1, 1]) ⊆ Wj . Let x ∈ Σg and t ∈ [0, 1]

(i) e1(x, t) ∼ e2(f1(x),−t)

(ii) e1(x,−t) ∼ e3(f2(x),−t)

(iii) e2(x, t) ∼ e3((f2 ◦ f−1
1 )(x), t)

We then set

W :=

3∐
j=1

Wj/ ∼

and W is an oriented 4-manifold with the desired property. As W is by construction associated with

the map pair (f1, f2), we write W (f1, f2).

Figure 2: The manifold W (f1, f2), see [BC78, Figure 2.2].

We now want to study the intersection form on the oriented 4-manifold W (f1, f2).
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Lemma 2.5. Let (f1, f2) be a map pair such that the fundamental triple consists of integer homology

spheres. Consider W (f1, f2). Assume that QW (f1,f2) is even. Then the signature of the intersection

form of QW (f1,f2) satisfies the following congruence.

−µ(Mg(f2)) + µ(Mg(f1)) + µ(Mg(f2 ◦ f−1
1 )) ≡ 1

8
σ(W (f1, f2)) mod 2

Proof. Let us first ensure that W (f1, f2) satisfies the requirements in Rokhlin’s Theorem. We observe

that H1(W ;Z) ∼= 0. This is given by definition, as every boundary component is an integer homology

sphere. As the intersection form is even, the manifold is spin. Cutting up W (f1, f2) such that

∂W (f1, f2) = −Mg(f2)⨿Mg(f1)⨿Mg(f2 ◦ f−1
1 )

does not change the intersection form and hence leaves the signature invariant. Considering Rokh-

lin’s Theorem and some properties of the Rokhlin invariant we have the following calculation which

concludes the proof.

µ(−Mg(f2)⨿Mg(f1)⨿Mg(f2 ◦ f−1
1 ))

= µ(−Mg(f2)) + µ(Mg(f1)) + µ(Mg(f2 ◦ f−1
1 )) mod 2

= −µ(Mg(f2)) + µ(Mg(f1)) + µ(Mg(f2 ◦ f−1
1 )) mod 2

≡ 1

8
σ(W (f1, f2)) mod 2

Lemma 2.6. Let (f1, f2) and (f ′
1, f

′
2) be both map pairs and consider the induced 4-manifolds W (f1, f2)

and W (f ′
1, f

′
2). Assume that Mg(f1), Mg(f2), Mg(f

′
1) and Mg(f

′
2) are all integer homology spheres.

Then QW (f1,f1) and QW (f ′
1,f

′
2)

are equivalent if and only if the map pair ((f1)∗, (f2)∗) and ((f ′
1)∗, (f

′
2)∗)

is equivalent.

Proof. As the proof uses other results we do not state, it is omitted, see [BC78, Lemma 6].

Lemma 2.7. Let f ∈ Mod(Σg) such that Mg(f) is an integer homology sphere. Then there exists a

map pair (f, f ′) with the following two properties.

(i) The intersection form of the 4-manifold W (f, f ′) is even.

(ii) The fundamental triple consists of only integer homology spheres and Mg(f
′ ◦ f−1) ∼= S3.

Proof. The proof is constructive and involves the use of the symplectic representation, see [BC78,

Lemma 7]

The following theorem is the main result of this section which is part of [BC78, Theorem 8].
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Theorem 2.8. Consider ρf : I(Σg) → Z/2Z as in Definition 2.2.

(i) ρf defines a group homomorphism. This is surjective.

(ii) If f and t both are attaching maps resulting from Heegaard embeddings such that Ψ(f) = Ψ(t),

then we already have ρf = ρt.

Proof. By assumption, Mg(f) is an integer homology sphere. By applying stabilisation, we may

assume that g is even. By Lemma 2.7 we can find a map pair (f, f ′) such that Mg(f
′) is an integer

homology sphere, Mg(f
′ ◦ f−1) ∼= S3 and QW (f,f ′) is even. Let us define t′ := f ′ ◦ f−1 ◦ t to obtain

the map pair (t, t′). By definition, we have t′ ◦ t−1 = f ′ ◦ f−1 and it follows that Ψ(f ′) = Ψ(t′) and

Mg(t
′ ◦ t−1) ∼= S3. As Mg(f

′) was assumed to be an integer homology sphere, Lemma 1.1 states

that Mg(t
′) is an integer homology sphere as well. By Lemma 2.6, QW (t,t′) is even. Let k ∈ I(Σg)

and consider the map pairs (k ◦ f, f ′) and (k ◦ t, t′). Note, as k acts trivially on homology, we have

(k ◦ f)∗ = f∗ and (k ◦ t)∗ = t∗. Thus, by Lemma 2.6, the homological intersection forms QW (k◦f,f ′)

and QW (f,f ′) are equivalent, and so are QW (k◦t,t′) and QW (t,t′), hence their signature is equal. By the

signature formula in Lemma 2.5, we have the following.

− µ(Mg(f)) + µ(Mg(f
′)) + µ(Mg(f

′ ◦ f−1))

≡− µ(Mg(k ◦ f)) + µ(Mg(f
′)) + µ(Mg(f

′ ◦ f−1 ◦ k−1)) mod 2

Similarly, for the pair (t, t′).

− µ(Mg(t)) + µ(Mg(t
′)) + µ(Mg(t

′ ◦ t−1))

≡− µ(Mg(k ◦ t)) + µ(Mg(t
′)) + µ(Mg(t

′ ◦ t−1 ◦ k−1)) mod 2

As Mg(f
′ ◦ f−1) ∼= S3, its Rokhlin invariant is 0, and since f ′ ◦ f−1 = t′ ◦ t−1 per definition, this

simplifies to the following.

µ(Mg(k ◦ f))− µ(Mg(f)) ≡ µ(Mg(f
′ ◦ f−1 ◦ k−1)) mod 2

µ(Mg(k ◦ t))− µ(Mg(t)) ≡ µ(Mg(f
′ ◦ f−1 ◦ k−1)) mod 2

We now have established the equation ρf (k) = ρt(k). This concludes the proof of the second part.

SinceMg(f
′◦f−1) ∼= S3 we know by Theorem 1.3 thatMg(f

′◦f−1◦k−1) is an integer homology sphere.

Therefore its Rokhlin invariant lies in Z/2Z. It is left to prove that ρf is a group homomorphism.

Let k1, k2 ∈ I(Σg).

ρf (k2 ◦ k1) ≡ µ(Mg(k2 ◦ k1 ◦ f))− µ(Mg(k1 ◦ f))

+µ(Mg(k1 ◦ f))− µ(Mg(f)) mod 2

≡ ρk1◦f (k2) + ρf (k1)

As Ψ(k1 ◦ f) = Ψ(f), by the second assertion, we get ρk1◦f (k2) = ρf (k2) and we indeed have the

structure of a group homomorphism. This is surjective, given by the Poincaré homology sphere and

applying stabilisation.
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Remark 2.9. Consider an arbitrary Heegaard embedding i : Σg → S3 with the induced attaching map

f ∈ Mod(Σg). The Birman-Craggs homomorphism ρf : I(Σg) → Z/2Z is given by the mapping

k 7→ µ(Mg(k ◦ f))

as µ(Mg(f)) = µ(S3) = 0.

Remark 2.10. Birman and Craggs proved a slightly more general version of Theorem 2.8. The proof

builds upon the special case we have dealt with. In the general version, one does not only consider

such homomorphisms obtained from Heegaard embeddings but maps f1, f2 ∈ Mod(Σg) such that

Mg(f2 ◦ f1) is an integer homology sphere. The Birman-Craggs homomorphisms are then defined as

ρ(f1,f2) : I(Σg) → Z/2Z by the mapping

k 7→ µ(Mg(f2 ◦ k ◦ f1))− µ(Mg(f2 ◦ f1)) mod 2

measuring the change in the Rokhlin invariant. In 1980, Johnson published a paper in which he proved

that every such Birman-Craggs homomorphism is obtained from a Heegaard embedding i : Σg → S3

as in the previous remark, see [Joh80, Lemma 7].

We now give some brief outlook on where to go with that result. This will be held informally. In

the just mentioned paper, Johnson builds upon the established Birman-Craggs homomorphisms and

extends them to a mapping into a certain vector space over Z/2Z. This combines all possible Birman-

Craggs homomorphisms into just one, the Birman-Craggs-Johnson homomorphism. We give a rough

outline of its construction, omitting most details and proofs. We follow [Joh80] and [BF07].

Definition 2.11 (Sp-form). An Sp-form is a function ω : H1(Σg;Z/2Z) → Z/2Z that satisfies

ω(a+ b) = ω(a) + ω(b) + a • b

with • : H1(Σg;Z/2Z) ⊗ H1(Σg;Z/2Z) → Z/2Z induced by Poincaré Duality and the cup product

evaluated on the generator of H2(Σg;Z/2Z). Note, ω(0) = 0. We set Ω(g) to be the set of all Sp-forms

on H1(Σg;Z/2Z).

We consider the Boolean polynomial algebra B(g) on Ω(g). This is defined as the following.

B(g) :=
Z/2Z[Ω(g)]
⟨ω2 − ω⟩

Each homology class a ∈ H1(Σg;Z/2Z) corresponds to a linear polynomial Pa ∈ B(g), given by

ω 7→ ω(a).

Lemma 2.12. The linear polynomials defined above satisfy the following for a, b ∈ H1(Σg;Z/2Z).

(i) Pa+b = Pa + Pb + a • b
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(ii) P 2
a = Pa

Proof. The first assertion follows directly from the definition of ω. We have the following calculation.

Pa+b(ω) = ω(a+ b) = ω(a) + ω(b) + a • b = Pa(ω) + Pb(ω) + a • b

The second assertion follows from the fact that ω(a)2 = ω(a) as we have ω(a) ∈ Z/2Z.

Given a symplectic basis (a1, b1, . . . , ag, bg) of H1(Σg;Z/2Z), the set of those linear polynomials Pai

and Pbi generates B(g). We denote Bk(g) as the subspace of B(g) which contains polynomials of

degree at most k. The polynomial

Arf(g) :=

g∑
i=1

PaiPbi

in B2(g) does not depend on the choice of the symplectic basis. We now define

B̃(g) :=
B(g)

Arf(g)

and similarly, denote B̃k(g) to be the subspace of B̃(g) which contains polynomials of degree at most

k. Johnson showed that all Birman-Craggs homomorphisms can be combined into a homomorphism

σ : I(Σg) → B̃3(g)

called the Birman-Craggs-Johnson homomorphism. This is done by identifying each Heegaard embed-

ding i : Σg → S3 with an element ωi ∈ Ω(g) using self-linking forms. This is fairly well explained by

Brendle and Farb, see [BF07, Section 2]. Considering all possible Heegaard embeddings i : Σg → S3

and the induced attaching maps fi : Σg → Σg, we get the following result.

ker(σ) =
⋂
i

ker(ρfi)

The Birman-Craggs-Johnson homomorphism plays a significat role in the evaluation of the homology

groups of I(Σg). Using the homomorphism σ : I(Σg) → B̃3(g), Johnson managed to show that

H1(I(Σg);Z/2Z) ∼= B̃(g).
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