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Abstract

In 1978, Birman and Craggs published a paper in which they established a collection of homo-
morphisms Z(2,) — Z/2Z, called the Birman-Craggs homomorphisms. We follow [BC78|, omitting

some details and enriching the text where we find it to be appropriate.

1 Preliminaries

The map ¥ : Mod(X,) — Aut(H1(X4;Z)) sending [f] to f, yields a surjective representation into the
symplectic group Sp(2g,Z) as the intersection form is preserved.

Lemma 1.1. Let f € Mod(X,) and V(f) be given by the following symplectic matriz.

R S

vN=1p o

Then My(f) = Hy Uy Hy is an integer homology sphere if and only if S is unimodular over Z.

Proof. This lemma can be found in [BC78|, Lemma 2], although Birman and Craggs do use a different
ordering of the basis elements. A proof is not given, so we provide one. We must only show that
Hi(My(f);Z) is trivial if and only if S is unimodular, then the claim follows by Poincaré Duality and

the Universal Coefficient Theorem. Consider the Mayer-Vietoris sequence for the canonical pushout.
i
2 > Hy
f 9Hg

In the pushout, we include 7 : ¥, < H, in a canonical way. On the level of homology, this is
given by the map 7 : @?il 7 — @?:1 Z which is dropping all the generators a;, as they are trivial in
Hi(Hy;Z). As f € Mod(3,), the induced map on homology is an automorphism on @31 1 Z. Abusing



notation, we post-compose with the inclusion and obtain the induced map f, : EBJZgZ 1L — @?:1 Z.

The Mayer-Vietoris sequence goes as follows.

0 Z 0 Hoy(My(

69511 7 — @?il Z — Hy(My(f): Z)
Z—LDL— Ho(My(f);Z) — 0

g

Firstly, observe that Hy(My(f);Z) is trivial if and only if the map @]2.9:1 7 — @?il 7 given by i, @ f
is an isomorphism. We will now study this map. For that, we take the standard basis of Hi(X4;Z).

ap = €1, ..., g = €g,
51:€g+1, ...,bg:egg

As the generators a; are being dropped, we only need to consider what happens to the generators b;.

The map 7, leaves the generators b; invariant. This is a basis for ?g: g+1 Z. Matrix multiplication

yields the following result.

_811- _821_ _891_
S1 S92 S
V()= | 7w = | s () (bg) = | P
qi1 qz21 dg1
| 919 | | 924 | | 999 |

As the last g entries are already covered by the inclusion i,, the map is an isomorphism if and only
if the matrix S is invertible. As we are working over the ring Z, this is given if and only if S has

determinant £1. This concludes the proof. O

Definition 1.2 (Torelli group). Consider Z(¥,) = ker(¥). This forms a normal subgroup of
Mod(%,) and we call it the Torelli group of 3,. This yields the following short exact sequence.

1 I(2y) = Mod(S,) 2 Sp(29,Z) — 1

Theorem 1.3. Let S* = H, Uy H, be a Heegaard splitting, k € I(3,). Then the closed oriented
3-manifold defined by My(k o f) = Hy Uy Hy is an integer homology sphere.

Proof. Any Heegaard splitting can be described as a pushout. Naturally, we can apply the Mayer-

Vietoris sequence. Since k is an element of the Torelli group, we know that the induced map in



homology, k., is trivial. This immediately gives us (ko f). = ki o fx = id o f, = f. and the resulting

Mayer-Vietoris sequence of both pushouts

Xy — H, Xy —_— H,
f qHg kof I,
H, —m, 53 H, L RN My(ko f)

is the same, thus He(M,(k o f);Z) = He(S3;Z). We abuse notation here, as both f and k o f map
into 0H,. O

2 The Birman-Craggs Homomorphisms

Definition 2.1 (Heegaard embedding). Let M be a closed oriented 3-manifold. A Heegaard embed-
ding is a smooth embedding ¢ : ¥; — M such that the image is a Heegaard surface. This means
i(X4) splits M into two handlebodies with the embedded ¥, as its boundary. This gives us a resulting
attaching map f € Mod(3,), hence M is given by the Heegaard splitting M = My(f) = Hy Uy H,,.

Figure 1: A Heegaard embedding 1 < S2 on the left, an embedding ¥; < S? which is no Heegaard
embedding on the right.

Definition 2.2 (Birman-Craggs Homomorphisms). Let My(f) be an integer homology sphere ob-
tained from a Heegaard embedding for g > 2. Define p; : I(X,) — Z/2Z by
k= u(Mg(ko f)) — p(My(f)) mod 2

measuring the change in the Rokhlin invariant. We call those maps Birman-Craggs homomorphisms.

At this point, it is everything but obvious that this truly defines a collection of homomorphisms from

the Torelli group to Z/27Z. We will need more results for the proof.

Definition 2.3 (Map pairs and fundamental triple). Let (fi, f2) € Mod(X,) x Mod(X,) be a map
pair. Each map pair defines a triple of closed oriented 3-manifolds (M, (fa), My(f1), My(f2 o fi 1))
which we call the fundamental triple for (f1, f2).



We now want to associate a map pair with a 4-manifold W such that the following holds.

OW = —My(f2) L My(f1) L My(f20 fl_l)

Definition 2.4. We construct such a manifold. Consider three disjoint copies Wy, Wa, W3 of the
4-manifold Hy x [-1, 1] and denote e; : Hy x [—1,1] — W; as the identity maps. We can orientate the
manifolds W in such a way that H; — H, x {1} AEN W; is an orientation preserving homeomorphism
for j = 1,2 and orientation reversing for j = 3. We define the following equivalence relation ~ on the
3-manifolds e;(X, x [-1,1]) € Wj. Let x € ¥, and ¢ € [0, 1]
(i) ex(w,t) ~ ex(fi(x), —1)

(ii) e(z, —t) ~ es(fa(z), —t)

(iii) ea(@,t) ~ es((foo fi (@), 1)
We then set

3
j=1

and W is an oriented 4-manifold with the desired property. As W is by construction associated with
the map pair (f1, f2), we write W(f1, fa).

ea(Hg x {0}) .

Figure 2: The manifold W (f1, f2), see [BC78|, Figure 2.2].

We now want to study the intersection form on the oriented 4-manifold W ( f1, f2).



Lemma 2.5. Let (f1, f2) be a map pair such that the fundamental triple consists of integer homology
spheres. Consider W (f1, f2). Assume that Qyy(y, 1,) is even. Then the signature of the intersection
Jorm of Q (y, 1, satisfies the following congruence.

a(W(f1, f2)) mod 2

ol —

—p(My(f2)) + p(My(f1)) + p(My(f2 0 ffl)) =

Proof. Let us first ensure that W ( f1, f2) satisfies the requirements in Rokhlin’s Theorem. We observe
that Hy(W;Z) = 0. This is given by definition, as every boundary component is an integer homology
sphere. As the intersection form is even, the manifold is spin. Cutting up W(f1, f2) such that

IW(f1, f2) = _Mg(f2) HMg(fl) HMg(f2 © fl_l)

does not change the intersection form and hence leaves the signature invariant. Considering Rokh-
lin’s Theorem and some properties of the Rokhlin invariant we have the following calculation which

concludes the proof.

=My (f2) T My(f1) L My(f2 0 fi))
= u(=My(f2)) + n(My(f1)) + (Mg (f2 0 f')) mod 2
= —p(My(f2)) + n(My(f1)) + p(Mg(f2 0 f1)) mod 2

- %J(W(fl,fg)) mod 2

O

Lemma 2.6. Let (f1, f2) and (f1, f5) be both map pairs and consider the induced 4-manifolds W ( f1, f2)
and W(f1, f5). Assume that My(f1), My(f2), Mg(f1) and My(f}) are all integer homology spheres.

Then Qw (s,,5,) and Qs 55) are equivalent if and only if the map pair ((f1)xs (f2)s) and ((f1)«, (f5)%)
s equivalent.

Proof. As the proof uses other results we do not state, it is omitted, see [BC78, Lemma 6]. [

Lemma 2.7. Let f € Mod(X,) such that M(f) is an integer homology sphere. Then there exists a
map pair (f, f') with the following two properties.

(i) The intersection form of the 4-manifold W (f, f') is even.

(i) The fundamental triple consists of only integer homology spheres and My(f' o f=1) = 53,

Proof. The proof is constructive and involves the use of the symplectic representation, see [BC78,
Lemma 7] O

The following theorem is the main result of this section which is part of [BC78, Theorem 8§].



Theorem 2.8. Consider py : Z(Xy) = Z/27 as in Definition .
(i) ps defines a group homomorphism. This is surjective.

(ii) If f and t both are attaching maps resulting from Heegaard embeddings such that W(f) = W(t),
then we already have py = p;.

Proof. By assumption, Mgy(f) is an integer homology sphere. By applying stabilisation, we may
assume that ¢ is even. By Lemma we can find a map pair (f, f’) such that My(f’) is an integer
homology sphere, M,(f o f~!) = S3 and Qw (s, is even. Let us define t' :== f'o f~Yot to obtain
the map pair (¢,#'). By definition, we have ' ot~ = f' o f~! and it follows that ¥(f’) = ¥(#') and
My(t' ot71) = S3. As M,(f') was assumed to be an integer homology sphere, Lemma states
that M, (t') is an integer homology sphere as well. By Lemma Qw e is even. Let k € I(3,)
and consider the map pairs (ko f, f’) and (ko t,t'). Note, as k acts trivially on homology, we have
(ko f)e = fs and (kot), = t,. Thus, by Lemma the homological intersection forms Qyy (ror, 1)
and Qyy (s, are equivalent, and so are Qyy (ko) and Qyy (¢4, hence their signature is equal. By the

signature formula in Lemma [2.5] we have the following.

= 1(My(f)) + n(My(f) + p(My(f' o f71))
= — w(My(k o f)) + u(My(f')) + n(My(f'o f~ 0 k7)) mod 2

Similarly, for the pair (¢,t').

= n(My(t)) + (M (t) + n(My(t 0 t71))

= — u(My(kot)) + pu(My(t')) + u(My(t' ot * o k™)) mod 2
As My(f" o f~1) = S3, its Rokhlin invariant is 0, and since f’o f=! = ¢/ o t=! per definition, this

simplifies to the following.
u(My(k o f)) — n(My(f))
p(My(k o t)) — pu(My(t))
We now have established the equation py(k) = ps(k). This concludes the proof of the second part.
Since My(f'of~1) 2 S3 we know by Theoremthat M,y (f'of~tok™!) is an integer homology sphere.

Therefore its Rokhlin invariant lies in Z/2Z. It is left to prove that p; is a group homomorphism.
Let ki, ko € Z(X,).

WMy o f~ o k™)) mod 2
p(My(f' o f71o k™)) mod 2

pilkeoky) = u(Mg(kaokyo f)) — u(Mg(ko f))
+u(Mg(ky o f)) — n(My(f))  mod 2
= Prrof(k2) + py(ki)
As W(ky o f) = ¥(f), by the second assertion, we get py,or(k2) = pr(k2) and we indeed have the

structure of a group homomorphism. This is surjective, given by the Poincaré homology sphere and

applying stabilisation. O



Remark 2.9. Consider an arbitrary Heegaard embedding 7 : X, — 53 with the induced attaching map
[ € Mod(%,). The Birman-Craggs homomorphism py : Z(X,) — Z/2Z is given by the mapping

k= p(Mg(ko f))

as u(My(f) = u(S%) = 0.

Remark 2.10. Birman and Craggs proved a slightly more general version of Theorem The proof
builds upon the special case we have dealt with. In the general version, one does not only consider
such homomorphisms obtained from Heegaard embeddings but maps fi, fo € Mod(X,) such that
Mgy(f2 0 f1) is an integer homology sphere. The Birman-Craggs homomorphisms are then defined as
P(fr o) - T(Eg) — Z/27 by the mapping

k= p(My(f2oko f1)) — u(Mg(f2o f1)) mod 2

measuring the change in the Rokhlin invariant. In 1980, Johnson published a paper in which he proved
that every such Birman-Craggs homomorphism is obtained from a Heegaard embedding ¢ : ¥, — S3

as in the previous remark, see |[Joh80, Lemma 7].

We now give some brief outlook on where to go with that result. This will be held informally. In
the just mentioned paper, Johnson builds upon the established Birman-Craggs homomorphisms and
extends them to a mapping into a certain vector space over Z/27Z. This combines all possible Birman-
Craggs homomorphisms into just one, the Birman-Craggs-Johnson homomorphism. We give a rough

outline of its construction, omitting most details and proofs. We follow [Joh80] and [BF07].

Definition 2.11 (Sp-form). An Sp-form is a function w : Hy(X4;Z/2Z) — 7 /27 that satisfies
w(a+b) =w(a) +wd)+aeb

with e : H(Xy;Z/27) ® H1(X4;Z/27) — 7Z/2Z induced by Poincaré Duality and the cup product
evaluated on the generator of Hy(Xy;Z/2Z). Note, w(0) = 0. We set §2(g) to be the set of all Sp-forms
on Hi(Xy4;Z/27).

We consider the Boolean polynomial algebra B(g) on Q(g). This is defined as the following.

(0) = 2

Each homology class a € Hi(Xg4;7Z/2Z) corresponds to a linear polynomial P, € B(g), given by
w— w(a).
Lemma 2.12. The linear polynomials defined above satisfy the following for a,b € Hi(X4;Z/2Z).

(Z) Poipy=FP,+PFP,+aebd



(ii) P7 = P,

Proof. The first assertion follows directly from the definition of w. We have the following calculation.
P,ip(w) =w(a+b) =w(a) + w(b) + aeb= P,(w) + Py(w) +aeb

The second assertion follows from the fact that w(a)? = w(a) as we have w(a) € Z/27Z. O

Given a symplectic basis (a1,b1,...,aq4,by) of Hi(X4;7/27), the set of those linear polynomials P,

and P,, generates B(g). We denote By(g) as the subspace of B(g) which contains polynomials of

degree at most k. The polynomial
g
Arf(g) = Z-Paipbi
i=1

in B2 (g) does not depend on the choice of the symplectic basis. We now define

=~ \._ Blg)
B = 4ty

and similarly, denote By (g) to be the subspace of B(g) which contains polynomials of degree at most

k. Johnson showed that all Birman-Craggs homomorphisms can be combined into a homomorphism
o :I(Zg) — B3(9)

called the Birman-Craggs-Johnson homomorphism. This is done by identifying each Heegaard embed-
ding i : ¥, — $3 with an element w; € Q(g) using self-linking forms. This is fairly well explained by
Brendle and Farb, see [BF07, Section 2]. Considering all possible Heegaard embeddings i : ¥, — S3
and the induced attaching maps f; : ¥, — X4, we get the following result.

ker(o) = m ker(py,)

The Birman-Craggs-Johnson homomorphism plays a significat role in the evaluation of the homology
groups of Z(%,). Using the homomorphism ¢ : Z(¥,) — Bs(g), Johnson managed to show that
H1(Z(%y); Z/2Z) = B(g).
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