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Abstract

Building on Milnor’s work on the existence of exotic spheres in [Mil56], Kervaire constructed

a manifold that does not admit any smooth structure. The obstruction is given by the Kervaire

invariant which can be thought of as a refinement of the mod 2 intersection pairing on an even-

dimensional manifold. This short summary serves as a gentle introduction, following Kervaire’s

original paper [Ker60] and work of Kervaire and Milnor as published in [KM63]. As the theory has

evolved since then, we try to give a more general perspective when it is reasonable, enriching the

text.

1 Definition of the Kervaire Invariant

The original definition is due to Kervaire as found in [Ker60]. Shortly after its publication, Kervaire

and Milnor generalised this definition, which is the one we will focus on for now.

Let M be a closed, (k − 1)-connected, 2k-manifold that admits a CW-structure. Since M is simply-

connected, it is orientable. By Poincaré duality, the universal coefficient theorem and Hurewicz,

it is easy to see that the cohomology of M is concentrated in degree 0, k and 2k. For any fixed

α ∈ Hk(M ;Z), we consider the problem of defining a map f : M → Sk such that f∗(s) = α, with s

generating Hk(Sk;Z) ∼= Z. Such questions can be answered using obstruction theory. We recall the

definition of the obstruction cochain associated to a lifting problem.

Let K be a CW-complex and Y a simple space. Here, simple means that the action of π1(Y ) on

πn(Y ) is trivial. Suppose there exists a map f : K(r) → Y which we would like to extend to the

(r + 1)-skeleton K(r+1).

Definition 1.1. Associated to any such lifting problem

K(r) Y

K(r+1)

f

as described above, is the obstruction cochain c(f) ∈ Cr+1
cell (K;πr(Y )) defined by

c(f)(er+1) = [f(∂er+1)] ∈ πr(Y ).

Here, er+1 is some (r + 1)-cell of K. Thus, the element in πr(Y ) can be viewed as the composition

Sr q−→ K(r) f−→ Y with q the attaching map of the (r + 1)-cell er+1. As homotopic gluing maps induce

homotopy equivalent spaces, we deal with the set of homotopy classes [Sr, Y ]. As Y was assumed to

be simple, this agrees with the set of pointed homotopy classes [Sr, Y ]∗ = πr(Y ). The main results

due to standard obstruction theory are the following.
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The Kervaire Invariant and a non-smoothable manifold

(1) The map f : K(r) → Y can be extended to K(r+1) if and only if c(f) = 0.

(2) The obstruction cochain c(f) is a cocycle.

The second point makes sure that we can think of c(f) equivalently as an obstruction class c(f) ∈
Hr+1(K;πr(Y )). There is the notion of a difference cochain which deals with the choice of different

extensions to the (r + 1)-skeleton of K. As we do not need it, we omit it here.

Back to the problem of defining a map f : M → Sk that satisfies f∗(s) = α for a chosen cohomology

class α ∈ Hk(M ;Z). By cellular approximation, we can assume that f is trivial on M (k−1). This is

backed up by the obstruction theory, as πr(Sk) vanishes for r ≤ k − 1. As f is assumed to be trivial

on M (k−1), any choice of extension on the k-skeleton factors through M (k)/M (k−1) ∼=
∨

Ik
Sk. Hence,

f : M (k) → Sk is entirely characterised by the mapping degree on each sphere. Let α̃ be some cocycle

representing the cohomology class α. For a given k-cell ek, we define

f(ek) := α̃(ek) · s.

Note that α̃(ek) ∈ Z is the corresponding mapping degree of the map from the sphere obtained

by collapsing ∂ek to Sk. This is given by the factorisation f : M (k) → M (k)/M (k−1) → Sk. The

obstruction to extend this map to M (k+1) is c(f) ∈ Ck+1
cell (M ;πk(Sk)). We calculate

c(f)(ek+1) = [f(∂ek+1)] = [α̃(∂ek+1) · s] = [δα̃(ek+1) · s] = 0

as α̃ is a cocycle representing the chosen cohomology class α ∈ Hk(M ;Z). Suppose we can extend the

map f to all of M . Running through the definition of cellular cohomology, it is easy to see that the

condition f∗(s) = α is indeed satisfied. The remaining cohomology groups of M vanish until degree

2k. Hence, the final obstruction cocycle lies in C2k
cell(M ;π2k−1(Sk)). Equivalently, we can consider the

obstruction class in H2k(M ;π2k−1(Sk)).

Definition 1.2. The Kervaire class c(α) of M is defined to be this final obstruction class. The

Kervaire form is the associated map c : Hk(M ;Z) → H2k(M ;π2k−1(Sk)).

Lemma 1.3. The Kervaire form c is natural. Namely, if g : M → M ′ is a map between manifolds

satisfying the necessary conditions, the following square commutes.

Hk(M ;Z) Hk(M ′;Z)

H2k(M ;π2k−1(Sk)) H2k(M ′;π2k−1(Sk))

g∗

g∗

cc

This immediately implies that the Kervaire form does not depend on the chosen CW-structure.

Lemma 1.4. The Kervaire form satisfies c(α + β) = c(α) + c(β) + [s, s](α ⌣ β). In the case of

π2k−1(Sk) being a field, as the cup-product pairing is bilinear, this implies that the Kervaire form is a

quadratic form.

Proof. Let U be the space obtained from Sk by killing all homotopy groups of degree at least 2k − 1.

Even though U is not a manifold, it makes sense to talk about its Kervaire class as all the needed

properties are fulfilled. Indeed, U is (k − 1)-connected and its cohomology groups Hr(U ;Z) vanishes
for k + 1 ≤ r ≤ 2k − 1. These assumptions hold for the space U × U as well. This gives rise to the

following two forms.
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(1) c : Hk(U ;Z) → H2k(U ;π2k−1(Sk))

(2) c : Hk(U × U ;Z) → H2k(U × U ;π2k−1(Sk))

We have Hk(U ;Z) ∼= Hk(Sk;Z) ∼= Z, let u be a generator of Hk(U ;Z). Furthermore, by the

Kuenneth formula, we have Hk(U × U ;Z) ∼= Hk(U ;Z) ⊕ Hk(U ;Z) and H2k(U × U ;π2k−1(Sk)) ∼=
H2k(U ;π2k−1(Sk))⊕H2k(U ;π2k−1(Sk))⊕Hk(U ;π2k−1(Sk))⊗Hk(U ;π2k−1(Sk)). Using this splitting,

we get that

c(u⊗ 1 + 1⊗ u) = a⊗ 1 + 1⊗ b+ γ(u⊗ u)

for a and b in H2k(U ;π2k−1(Sk)) and γ ∈ π2k−1(Sk) a coefficient. We claim that a = c(u) = b. For

this, we consider the inclusion U × e0 ↪→ U × U and apply naturality of c.

u u⊗ 1 + 1⊗ u

Hk(U ;Z) Hk(U × U ;Z)

c(u) H2k(U ;π2k−1(Sk)) H2k(U × U ;π2k−1(Sk))

a a⊗ 1 + 1⊗ b+ γ(u⊗ u)

pr1

pr1

cc

Considering the inclusion e0 × U ↪→ U × U yields b = c(u). It is left to evaluate the coefficient γ ∈
π2k−1(Sk). We claim that γ is given by the Whitehead product class [s, s]. Consider the inclusion Sk×
Sk ↪→ U ×U . The splitting of H2k(U ×U ;π2k−1(Sk)) in the Kuenneth formula comes from a splitting

on the (2k)-skeleton of U × U . The embedded Sk × Sk contributes to the factor Hk(U ;π2k−1(Sk)) ⊗
Hk(U ;π2k−1(Sk)). Applying naturality yields the following commutative diagram.

s⊗ 1 + 1⊗ s u⊗ 1 + 1⊗ u

Hk(Sk × Sk;Z) Hk(U × U ;Z)

c(s⊗ 1 + 1⊗ s) H2k(Sk × Sk;π2k−1(Sk)) H2k(U × U ;π2k−1(Sk))

γ(s⊗ s) a⊗ 1 + 1⊗ b+ γ(u⊗ u)

∼=

pr3

cc

Note that c(s ⊗ 1 + 1 ⊗ s) is the obstruction class associated to the problem of defining a map

f : Sk × Sk → Sk such that f∗(s) = s ⊗ 1 + 1 ⊗ s. Applying Hurewicz, this can be rephrased as f

satisfying f ◦ i1 = s and f ◦ i2 = s. Here, s is represents the identity map s : Sk → Sk as it generates

πk(Sk) ∼= Hk(Sk). We claim that [s, s] = 0 if and only if such a map f exists, hence concluding that

γ = [s, s]. Consider the following diagram.

S2k−1 Sk ∨ Sk Sk

D2k Sk × Sk
j

q

Q

i1∨i2

s∨s

⌟

The composition of the upper row is the Whitehead product, the square is the CW-pushout diagram

associated to Sk × Sk.
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(1) Suppose [s, s] = 0. Therefore, the composition (s ∨ s) ◦ q : S2k−1 → Sk is homotopically trivial,

and it extends to a map f̃ : D2k → Sk. Applying the universal property of the pushout to the

map s∨ s : Sk ∨ Sk → Sk yields the existence of the desired map f : Sk × Sk → Sk, satisfying the

necessary conditions.

(2) Suppose such a map f : Sk×Sk → Sk exists. Then s∨s = F ◦(i1∨i2) and (s∨s)◦q = F ◦(i1∨i2)◦q.
Since (i1 ∨ i2) ◦ q = Q ◦ j and D2k is contractible, the composition (i1 ∨ i2) ◦ q : S2k−1 → Sk × Sk

is homotopically trivial. Thus, [s, s] = 0.

Together, we have shown that c(u ⊗ 1 + 1 ⊗ u) = c(u) ⊗ 1 + 1 ⊗ c(u) + [s, s](u ⊗ u). Notice that

u⊗u = (u⊗1) ⌣ (1⊗u). Consider two cohomology classes α and β in Hk(M ;Z). Since π2k−1(U) = 0,

the higher obstruction classes vanish, and we can define two maps gα : M → U and gβ : M → U such

that g∗α(u) = α and g∗(u) = β. Let us define g : M → U ×U as (gα, gβ). It is clear that g
∗(u⊗ 1) = α

and g∗(1⊗ u) = β. Using naturality of the Kervaire form, we have

c(α+ β) = c(g∗(u⊗ 1 + 1⊗ u))

= g∗(c(u⊗ 1 + 1⊗ u))

= g∗(c(u)⊗ 1 + 1⊗ c(u) + [s, s]((u⊗ 1) ⌣ (1⊗ u)))

= g∗(c(u⊗ 1)) + g∗(c(1⊗ u)) + [s, s]g∗((u⊗ 1) ⌣ (1⊗ u))

= c(g∗(u⊗ 1)) + c(g∗(1⊗ u)) + [s, s](g∗((u⊗ 1)) ⌣ g∗((1⊗ u)))

= c(α) + c(β) + [s, s](α ⌣ β).

This concludes the proof.

So far, it is not clear why the Kervaire invariant should be Z/2-valued. In the case of k = 5, we have

π9(S5) ∼= Z/2. The Kervaire form c : H5(M ;Z) → Z/2 induces a form c̃ : H5(M ;Z/2) → Z/2. Indeed,
we have c(2α) = c(α) + c(α) + α ∪ α = 0. Furthermore, we have the following result.

Lemma 1.5. Let k be odd, M a closed, (k−1)-connected, framed 2k-manifold. An embedded k-sphere

Sk in M has trivial normal bundle if and only if its dual cohomology class α ∈ Hk(M ;Z) satisfies

c(α) = 0.

Proof. Let ν : Sk → BSO(k) be the normal bundle of the embedded k-sphere in M and N ⊆ M a

tubular neighbourhood. By excision and the long exact sequence of pairs, H2k(Th(ν);π2k−1(Sk)) ∼=
H2k(M,M \ Ṅ ;π2k−1(Sk)) ∼= H2k(M ;π2k−1(Sk)). Naturality of c yields the commutativity of the

following diagram.

ik c(ik)

Hk(Th(ν);Z) H2k(Th(ν);π2k−1(Sk))

Hk(M ;Z) H2k(M ;π2k−1(Sk))

α c(α)

c

c

P ∗ ∼=

Here, ik generates Hk(Th(ν);Z) and P : M → Th(ν) is the collapse-map. With a chosen isomorphism,

we have c(ik) = c(α) ∈ π2k−1(Sk). Therefore, the Kervaire class only depends on the embedded sphere.
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Since M is framed, ν is stably trivial, hence it lies in the kernel of the map

πk(BSO(k)) → πk(BSO)

which, for k odd and k /∈ {1, 3, 7}, is cyclic of order 2. Hence, in this case, the Kervaire form is

Z/2-valued. The only non-trivial element is given by the tangent bundle TSk, which can be identified

with the normal bundle of the diagonal ∆ ⊆ Sk × Sk. Choosing an orientation on Th(ν) and Sk × Sk

corresponds to the choice of the fundamental class [Th(ν)] and [Sk × Sk]. Suppose ν is non-trivial,

then it can be identified with the normal bundle of ∆ ⊆ Sk × Sk. By previous results, we have

c(ik)[Th(ν)] = c(s⊗ 1 + 1⊗ s)[Sk × Sk] = [s, s] ̸= 0.

If ν is trivial, c(ik) clearly vanishes. This concludes the proof.

Similarly as discussed above, in the case of M being framed, the Kervaire form induces a form c̃ :

Hk(M ;Z/2) → Z/2 satisfying the analogue properties.

Definition 1.6. We define the Kervaire invariant Φ(M) to be the Arf-invariant of c̃. That is, given

a symplectic basis {αi, βi}ni=1 of Hk(M ;Z/2), Φ(M) :=
∑n

i=1 c̃(αi)c̃(βi).

An alternative interpretation of the Kervaire invariant has been given by Browder, see [Bro69]. We

recall the definition here. Let M be a closed, framed 2k-manifold. Then there is an embedding

i : M ↪→ R2k+r such that the normal bundle ν of M admits a trivialisation. Notice that its Thom

space Th(ν) is then given by Σr(M). Identifying S2k+r with (R2k+r)+, the one-point compactification,

the Pontrjagin-Thom collapse map is given by P : S2k+r → Σr(M).

Definition 1.7. Let α ∈ Hk(M ;Z/2) represented by α : M → K(Z/2, k). Pre-composition with the

Pontrjagin-Thom collapse map as above gives

S2k+r Σr(M) Σr(K(Z/2), k)Σr(α)P

defining an element in π2k+r(Σ
r(K(Z/2, k))). As r can be chosen to be arbitrary large, we’re dealing

with homotopy groups of the suspension spectrum of K(Z/2, k), namely π2k(Σ
∞(K(Z/2, k))) ∼= Z/2.

The corresponding element is denoted as c̃(α), and this defines a quadratic form c̃ : Hk(M ;Z/2) →
Z/2. Its Arf-invariant is the Kervaire invariant.

This definition agrees with the one given by Kervaire on its common domain of definition. Namely,

using framed surgery, we can assume that the manifold M is (k−1)-connected. We know that, in this

case, the Kervaire invariant can be geometrically interpreted as a question about embedded spheres

having trivial normal bundle ν in M . Let α ∈ Hk(M ;Z/2) and consider the normal bundle ν of

the representing embedded sphere Sk ⊆ M . Let i5 be the generator of Hk(Th(ν);Z/2). The map

α : M → K(Z/2, k) can be factored

M Th(ν) K(Z/2, k)α̃P

with α̃∗(κ) = i5, with κ being the generator of Hk(K(Z/2, k)).

2 The Kervaire Manifold

We will focus on the construction of the Kervaire manifold, a manifold that does not admit any smooth

structure. The obstruction to show this is going to be the Kervaire invariant. Consider the tangent
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bundle TS5 of S5, and its associated disk bundle which we will denote by d : E → S5. Let D5 ⊆ S5 be

embedded, such that d|D5
∼= D5×D5, meaning the disk bundle over D5 looks like a trivial bundle. This

always exists and gives rise to a standard two-chart trivialisation of the tangent bundle of S5, such
that it is entirely characterised by the clutching map S4 → SO(5). Let W := E ∪D5×D5 E such that

the gluing map swaps the sphere- and bundle-coordinate. This is a standard plumbing construction.

After smoothing corners, we may assume that W is a smooth 10-manifold with non-empty boundary

∂W .

Theorem 2.1. The boundary of W is homeomorphic to S9.

Proof. This is due to Milnor, see [Mil59], and uses Morse-theory. Given an explicit description of the

gluing map, Milnor constructs a Morse function with only two critical points.

Definition 2.2. The Kervaire manifold M0 is defined as M0 := W ∪∂W D10. Since ∂W ∼= S9, we can

attach a cone to W to obtain the closed, 4-connected 10-manifold M0.

The claim is that M0 does not admit any smooth structure. For this, we point to Theorem 3.1,

which states that for any 4-connected, closed, smooth 10-manifold M , the Kervaire invariant satisfies

Φ(M) = 0. Clearly, the manifold M0 carries a CW-structure which comes from a CW-structure of

TS5. We will now compute the Kervaire invariant of M0.

Theorem 2.3. The Kervaire invariant Φ(M0) of M0 is 1.

Proof. We calculate the cohomology of M0. Note that we are attaching a 10-cell D10 to W to obtain

M0. Therefore, Hk(M0;Z/2) ∼= Hk(W ;Z/2) for 0 ≤ k ≤ 9. Since M0 is 4-connected, the only

interesting cohomology group is H5(M0;Z/2). The two generators α and β are represented by the

two 0-sections of the two copies of d : E → S5 by Poincaré duality. Since they intersect transversally

in a single point, this forms a symplectic basis. Let a : S5 → M0 be dual to α. This completely lies in

the smooth part given by W , hence we can form the normal bundle of the embedded sphere. This is

just given by d : E → S5. We consider the map P : M0 → Th(d) given by collapsing M0 \ Ė to the

basepoint.

Let U again be the space formed from S5 by killing all homotopy groups of degree at least 9. We claim

that Th(d) ≃ U (10). As π9(S5) ∼= Z/2, we only need to attach one 10-cell to obtain U (10). Of course,

the attaching map is given by the Whitehead-product [s5, s5] : S9 → S5 as this generates π9(S5). Th(d)
has only one 5-cell and one 10-cell. This comes from pulling back the characteristic maps D0 → S5

and D5 → S5. Since the cells are contractible, the pullback is a product, giving a 5-cell and a 10-cell.

As d : E → S5 is non-trivial, the attaching map must be homotopic to the Whitehead-product, hence

Th(d) ≃ U (10).

Therefore, we get a map f : M0 → U by P : M0 → Th(d), identifying Th(d) ≃ U (10) and post-

composing with the inclusion i : U (10) ↪→ U . We get the following commuting diagram.
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u5 c(u5)

H5(U ;Z) H10(U ;Z/2) u10

i5 H5(Th(d);Z) H10(Th(d);Z/2) c(i5)

H5(M0;Z) H10(M0;Z/2)

α c(α)

c

c

c

P ∗ ∼=

∼= i∗

Here, u5 generates H5(U ;Z) and u10 generates H10(U ;Z/2). Notice that f∗(u5) = α, and c(u5) must

be a generator by definition of the Kervaire class. Namely, c(u5) = [f(∂e10)] = [s, s] as the attaching

map is given by the Whitehead product. By the cofibration sequence

. . . 0 H10(U (11);Z/2) H10(U (10);Z/2) H11(
∨n

i=1 S11;Z/2) . . .i∗

we can see that i∗ sends the generator u10 to a generator of H10(Th(d);Z/2). By the isomorphism

on the right-hand side, f∗(u10) = c(α) must generate H10(M0;Z/2) ∼= Z/2. This argument can

be repeated for the second generator β of H5(M0;Z/2), resulting in c(α) = c(β) = 1. Therefore,

Φ(M0) = c(α)c(β) = 1.

Combining this result with Theorem 3.1 yields the following corollaries.

Corollary 2.4. The Kervaire manifold M0 does not admit any smooth structure.

Corollary 2.5. The boundary ∂W of W is homeomorphic to S9 but not diffeomorphic.

Proof. If it were, the Kervaire manifold M0 would be smooth, as D10 is smooth.

3 Vanishing of the Kervaire Invariant

This section is devoted to the proof of the following theorem.

Theorem 3.1. Let M be a 4-connected, closed, smooth 10-manifold. Then its Kervaire-invariant

Φ(M) vanishes.

The proof consists of the following lemmata.

Lemma 3.2. Any 4-connected, closed, smooth 10-manifold admits a framing.

Proof. We follow [Ker60]. Let M be a 4-connected, closed, smooth 10-manifold. Let i : M ↪→
R10+n be an embedding, with n large. Since M is smooth, it admits a CW-structure. We will use

obstruction theory to show that the normal bundle ν : M → SO(n) of M in R10+n is trivial. Since

π4(SO(n)) = 0 and M is 4-connected, we get Hk+1(M ;πk(SO(n))) = 0 for 0 ≤ k ≤ 8. Therefore, the

only possibly non-trivial obstruction class to constructing a field of normal n-frames fn is c(ν, fn) ∈
H10(M ;π9(SO(n))) ∼= π9(SO(n)). In [KM58], this has been identified with the kernel of the Hopf-

Whitehead homomorphism J9 : π9(SO(n)) → π9(S). This is a monomorphism, hence the obstruction

class vanishes. This concludes the proof.
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Lemma 3.3. The Kervaire invariant defines a homomorphism Ωfr
2k → Z/2.

Proof. In [Bro69], Browder shows that a framed 2k-dimensional manifold which is cobordant to the

empty set has vanishing Kervaire invariant. Let M and N be two framed 2k-manifolds. Using Mayer-

Vietoris, it is easy to see that Hk(M#N ;Z/2) ∼= Hk(M ;Z/2) ⊕ Hk(N ;Z/2). Picking a symplectic

basis for each summand gives a symplectic basis for Hk(M#N ;Z/2). Using naturality of the Kervaire

form and the collapse maps M#N → M and M#N → N we get the following commutative diagram.

Hk(M ;Z/2) Hk(M#N ;Z/2) Hk(N ;Z/2)

H2k(M ;Z/2) H2k(M#N ;Z/2) H2k(N ;Z/2)

i1 i2

cc c

We find that Φ(M#N) = Φ(M) + Φ(N).

Using the Pontrjagin-Thom isomorphism Ωfr
∗ → π∗(S), we have a homomorphism Φ : π10(S) → Z/2

which kills all elements of odd order. It is therefore left to examine the homomorphism on the 2-

components.

Lemma 3.4. Pre-composition with the Hopf map η ∈ π1(S) induces a surjection π9(S)(2) ↠ π10(S)(2).

Proof. This can be easily seen by examining the Adams spectral sequence. The only groups that show

up in the 10-stem on the E2-page of the Adams spectral sequence are the following. Let P be the

v1-periodicity element. Simply for degree reasons, Ph1 and Ph21 are permanent cycles, and no other

groups show up.

Lemma 3.5. Let β ◦ η = α ∈ π10(S) with β ∈ π9(S). By the Pontrjagin-Thom isomorphism, α is

represented by a homotopy 10-sphere Σ10.

Note that any homotopy 10-sphere is homeomorphic to S10. This has been proven by Smale, [Sma61],

using the h-cobordism theorem.

Proof. This heavily uses early results in surgery theory. For details, see [Ker60]. Kervaire shows

that any framed 9-manifold M representing β is framed cobordant to a homotopy 9-sphere Σ9 by

performing framed surgery. Therefore, α is represented by Σ9 × S1. Once again using framed surgery

theory, one can easily kill π1(Σ
9 × S1) and obtains a framed cobordism to a homotopy 10-sphere

Σ10.

Proof of Theorem 3.1. Combining the previous lemmata, since Hk(Σ10;Z/2) = 0, the Kervaire invari-

ant vanishes.
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