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Abstract

Building on Milnor’s work on the existence of exotic spheres in [Mil56], Kervaire constructed
a manifold that does not admit any smooth structure. The obstruction is given by the Kervaire
invariant which can be thought of as a refinement of the mod 2 intersection pairing on an even-
dimensional manifold. This short summary serves as a gentle introduction, following Kervaire’s
original paper |[Ker60| and work of Kervaire and Milnor as published in [KM63]. As the theory has
evolved since then, we try to give a more general perspective when it is reasonable, enriching the
text.

1 DEFINITION OF THE KERVAIRE INVARIANT

The original definition is due to Kervaire as found in [Ker60]. Shortly after its publication, Kervaire

and Milnor generalised this definition, which is the one we will focus on for now.

Let M be a closed, (k — 1)-connected, 2k-manifold that admits a CW-structure. Since M is simply-
connected, it is orientable. By Poincaré duality, the universal coefficient theorem and Hurewicz,
it is easy to see that the cohomology of M is concentrated in degree 0, k and 2k. For any fixed
o € H*(M:;Z), we consider the problem of defining a map f : M — S¥ such that f*(s) = «, with s
generating H*(SF;Z) = 7. Such questions can be answered using obstruction theory. We recall the

definition of the obstruction cochain associated to a lifting problem.

Let K be a CW-complex and Y a simple space. Here, simple means that the action of 71(Y) on
7mn(Y) is trivial. Suppose there exists a map f : K (") — Y which we would like to extend to the
(7 + 1)-skeleton K(+1),

Definition 1.1. Associated to any such lifting problem

K (r+1)

as described above, is the obstruction cochain ¢(f) € CTH(K;m,(Y)) defined by

cell

c(F)(eh) = [f(9e)] € m(Y).

+1is some (7 + 1)-cell of K. Thus, the element in m.(Y) can be viewed as the composition

Here, e"
sy k() Iy v with q the attaching map of the (r + 1)-cell e"*!. As homotopic gluing maps induce
homotopy equivalent spaces, we deal with the set of homotopy classes [S",Y]. As Y was assumed to
be simple, this agrees with the set of pointed homotopy classes [S™,Y]. = 7.(Y). The main results

due to standard obstruction theory are the following.
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(1) The map f: K" — Y can be extended to K+ if and only if ¢(f) = 0.
(2) The obstruction cochain ¢(f) is a cocycle.

The second point makes sure that we can think of ¢(f) equivalently as an obstruction class ¢(f) €
H™Y(K;m.(Y)). There is the notion of a difference cochain which deals with the choice of different

extensions to the (r + 1)-skeleton of K. As we do not need it, we omit it here.

Back to the problem of defining a map f : M — SF that satisfies f*(s) = « for a chosen cohomology
class a € H¥(M;Z). By cellular approximation, we can assume that f is trivial on M (k=1) " This is
backed up by the obstruction theory, as 7,.(S¥) vanishes for » < k — 1. As f is assumed to be trivial
on M*=1 any choice of extension on the k-skeleton factors through M ®*) /pr(k=1) =~ \/ I S*. Hence,
f: M®*) — SF is entirely characterised by the mapping degree on each sphere. Let & be some cocycle

representing the cohomology class .. For a given k-cell e*, we define
f(eF) = a(e*) - s.

Note that &(e¥) € Z is the corresponding mapping degree of the map from the sphere obtained
by collapsing deF to SF. This is given by the factorisation f : M*) — M(k)/M(k_l) — SF. The
obstruction to extend this map to M*+1) is ¢(f) € CELY(M; 7, (SF)). We calculate

cell
c(f)(eh) = [f(0eMH)] = [a(9e"™) - 5] = [pa(e" ) - 5] = 0

as @ is a cocycle representing the chosen cohomology class o € H*(M;Z). Suppose we can extend the
map f to all of M. Running through the definition of cellular cohomology, it is easy to see that the
condition f*(s) = « is indeed satisfied. The remaining cohomology groups of M vanish until degree
2k. Hence, the final obstruction cocycle lies in C2k (M ; 79y, 1 (S¥)). Equivalently, we can consider the

cell
obstruction class in H2*(M; mop,_1(SF)).

Definition 1.2. The Kervaire class c¢(a) of M is defined to be this final obstruction class. The
Kervaire form is the associated map ¢ : H*(M;Z) — H?*(M; mo,_1(SF)).

Lemma 1.3. The Kervaire form c is natural. Namely, if g : M — M’ is a map between manifolds

satisfying the necessary conditions, the following square commuites.

HYM;Z) % g M 7)

H2(M; a1 (S¥)) L HP(M'; a1 (S¥))

This immediately implies that the Kervaire form does not depend on the chosen CW-structure.

Lemma 1.4. The Kervaire form satisfies c(a + B) = c(a) + ¢(B) + [s,s](ac — ). In the case of
Wzk,l(Sk) being a field, as the cup-product pairing is bilinear, this implies that the Kervaire form is a

quadratic form.

Proof. Let U be the space obtained from S* by killing all homotopy groups of degree at least 2k — 1.
Even though U is not a manifold, it makes sense to talk about its Kervaire class as all the needed
properties are fulfilled. Indeed, U is (k — 1)-connected and its cohomology groups H"(U;Z) vanishes
for k+1 < r <2k — 1. These assumptions hold for the space U x U as well. This gives rise to the

following two forms.
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(1) ¢: H¥U;Z) — H?*(U; map,—1(S¥))
(2) c: HY(U x U;Z) — H?*(U x U;mor_1(S¥))
We have H¥(U;Z) = H¥(SF;Z) = 7Z, let u be a generator of H¥(U;Z). Furthermore, by the
Kuenneth formula, we have H*(U x U;Z) = H*(U;Z) @ H*(U;Z) and H*(U x U;my_1(S¥)) =
H(U; mop—1(S7)) @ H*(U; mop—1(SY)) @ H¥(U; w1 (S*)) @ H¥(U; wap—1(SF)). Using this splitting,
we get that
c(u®l+10u)=a®1+1®b+v(u®u)

for a and b in H?*(U; mo1,_1(S¥)) and « € mop_1(S¥) a coefficient. We claim that a = c¢(u) = b. For
this, we consider the inclusion U x € < U x U and apply naturality of c.

U < uRX1l+1Ru

a< a®1+10b+v(u®u)

Considering the inclusion €® x U < U x U yields b = c(u). It is left to evaluate the coefficient v €
Tor—1(S¥). We claim that + is given by the Whitehead product class [s, s]. Consider the inclusion S* x
Sk <3 U x U. The splitting of H?*(U x U; 7a;,_1(S¥)) in the Kuenneth formula comes from a splitting
on the (2k)-skeleton of U x U. The embedded S¥ x S¥ contributes to the factor H*(U; mop_1(S¥)) ®
H(U; m95,_1(S¥)). Applying naturality yields the following commutative diagram.

sRI1I+1®s u®1l+1Qu

HE(SF x Sk,7) «+— = HMU x U;Z)

(s®@14+1®s) H*(SF x S*: mop_1(SF)E H2* (U x U; wop_1(S¥))

T~ l

v(s® s) < a®@1+10b+v(u®u)

Note that ¢(s ® 1 + 1 ® s) is the obstruction class associated to the problem of defining a map
f:S¥ x Sk — S* such that f*(s) = s ® 14 1 ® s. Applying Hurewicz, this can be rephrased as f
satisfying f oi; = s and f oiy = s. Here, s is represents the identity map s : S* — S* as it generates
me(SF) = H*(S*). We claim that [s,s] = 0 if and only if such a map f exists, hence concluding that
v = [s, s]. Consider the following diagram.

SQk 1 Sk vV Sk Sk

]\[ \Lil Vig
-

D2 2, sk x Sk

The composition of the upper row is the Whitehead product, the square is the CW-pushout diagram
associated to SF x SF.
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(1) Suppose [s, s] = 0. Therefore, the composition (s V s) o q : S?*~1 — SF is homotopically trivial,
and it extends to a map f : D** — S*. Applying the universal property of the pushout to the
map sV s : SFVSF — SF yields the existence of the desired map f : S* x S¥ — S*, satisfying the

necessary conditions.

(2) Suppose such amap f : S¥ xSF — S¥ exists. Then sVs = Fo(i1Viy) and (sVs)oq = Fo(i1Vig)oq.
Since (i1 Vi) o g = Q o j and D?* is contractible, the composition (i; Vig) o q : S?¥~1 — Sk x SF
is homotopically trivial. Thus, [s, s] = 0.

Together, we have shown that c(u ® 1 + 1 ®@ u) = c(u) ® 1 + 1 ® c(u) + [s, s](u ® u). Notice that
u®u = (u®1) — (1®u). Consider two cohomology classes o and 3 in H*(M;Z). Since mo,_1(U) = 0,
the higher obstruction classes vanish, and we can define two maps g, : M — U and gg : M — U such
that g} (u) = a and g*(u) = 3. Let us define g : M — U x U as (ga,gp). It is clear that g*(u® 1) = «

and ¢*(1 ® u) = B. Using naturality of the Kervaire form, we have

(ot B) = (g (w® 1+ 18 w)
=g (c(u®l+1®u))
=g"(c(u) ®14+1Rc(u) + [s,s](u®1) — (1 ®@u)))
=g (c(u®l))+g (c(l®u) +[sslg"(u@1) — (1Qu))
“( «

g°( )
=g (w@ 1) +clg"(1@u) +[ss](¢" (@ 1) — g" (1 @ u))
= c(a@) +¢(B) + [s, sl(a — f).

This concludes the proof. O

So far, it is not clear why the Kervaire invariant should be Z/2-valued. In the case of k = 5, we have
m9(S®) = Z/2. The Kervaire form ¢ : H>(M;Z) — Z/2 induces a form ¢ : H>(M;7Z/2) — Z/2. Indeed,

we have ¢(2a) = ¢(a) + ¢(a) + U a = 0. Furthermore, we have the following result.

Lemma 1.5. Let k be odd, M a closed, (k—1)-connected, framed 2k-manifold. An embedded k-sphere
S* in M has trivial normal bundle if and only if its dual cohomology class o € H*(M;Z) satisfies

c(a) = 0.

Proof. Let v : S* — BSO(k) be the normal bundle of the embedded k-sphere in M and N C M a
tubular neighbourhood. By excision and the long exact sequence of pairs, H?*(Th(v); mor_1(S¥)) =
H? (M, M \ N;mo,_1(S¥)) = H?*(M;my,_1(S¥)). Naturality of ¢ yields the commutativity of the

following diagram.

T b > C(Zk)

H¥(Th(v); Z) —5— H?*(Th(v); mor_1(S¥))

lp* F

H¥(M;7) ——— H?*(M; 7op_1(SF))

~
~

a > c(ar)

Here, i}, generates H*(Th(v); Z) and P : M — Th(v) is the collapse-map. With a chosen isomorphism,
we have c(i3,) = c¢(a) € mar_1(SF). Therefore, the Kervaire class only depends on the embedded sphere.
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Since M is framed, v is stably trivial, hence it lies in the kernel of the map
7 (BSO(k)) — 7 (BSO)

which, for k odd and k& ¢ {1,3,7}, is cyclic of order 2. Hence, in this case, the Kervaire form is
7Z./2-valued. The only non-trivial element is given by the tangent bundle T'S*, which can be identified
with the normal bundle of the diagonal A C S* x S¥. Choosing an orientation on Th(r) and S¥ x Sk
corresponds to the choice of the fundamental class [Th(v)] and [S* x S¥]. Suppose v is non-trivial,

then it can be identified with the normal bundle of A C S¥ x S¥. By previous results, we have
c(ip)[Th(¥)] = c(s @ 1 +1® s)[S* x S¥] = [s, 5] # 0.

If v is trivial, c(ix) clearly vanishes. This concludes the proof. O

Similarly as discussed above, in the case of M being framed, the Kervaire form induces a form ¢ :
HF¥(M;7./2) — 7./2 satisfying the analogue properties.

Definition 1.6. We define the Kervaire invariant ®(M) to be the Arf-invariant of ¢. That is, given
a symplectic basis {ay, 8;}7; of H¥(M;Z/2), ®(M) = > | &(a;)é(Bi).

An alternative interpretation of the Kervaire invariant has been given by Browder, see |Bro69]. We
recall the definition here. Let M be a closed, framed 2k-manifold. Then there is an embedding
i © M < R?**7 such that the normal bundle v of M admits a trivialisation. Notice that its Thom
space Th(v) is then given by ¥7(M). Identifying S?**7 with (R?**")*, the one-point compactification,
the Pontrjagin-Thom collapse map is given by P : S+ — ¥7(M).

Definition 1.7. Let o € H¥(M;7Z/2) represented by o : M — K(Z/2,k). Pre-composition with the

Pontrjagin-Thom collapse map as above gives
s2htr P srary 2 sk (z/2), k)

defining an element in mory (X" (K(Z/2,k))). As r can be chosen to be arbitrary large, we're dealing
with homotopy groups of the suspension spectrum of K(Z/2, k), namely mor(X°(K(Z/2,k))) = Z/2.
The corresponding element is denoted as &(«), and this defines a quadratic form é: H*(M;Z/2) —

Z/2. Tts Arf-invariant is the Kervaire invariant.

This definition agrees with the one given by Kervaire on its common domain of definition. Namely,
using framed surgery, we can assume that the manifold M is (k — 1)-connected. We know that, in this
case, the Kervaire invariant can be geometrically interpreted as a question about embedded spheres
having trivial normal bundle v in M. Let o € H¥(M;Z/2) and consider the normal bundle v of
the representing embedded sphere S¥ C M. Let i5 be the generator of H*(Th(v);Z/2). The map
a: M — K(Z/2,k) can be factored

M —2 Th(v) —% K(Z/2, k)

with &*(k) = i5, with & being the generator of H*(K(Z/2,k)).

2 THE KERVAIRE MANIFOLD

We will focus on the construction of the Kervaire manifold, a manifold that does not admit any smooth

structure. The obstruction to show this is going to be the Kervaire invariant. Consider the tangent
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bundle TS® of S°, and its associated disk bundle which we will denote by d : E — S°. Let D> C S° be
embedded, such that d|ps = D® x D3, meaning the disk bundle over D looks like a trivial bundle. This
always exists and gives rise to a standard two-chart trivialisation of the tangent bundle of S°, such
that it is entirely characterised by the clutching map S* — SO(5). Let W := E Ups,ps E such that
the gluing map swaps the sphere- and bundle-coordinate. This is a standard plumbing construction.

After smoothing corners, we may assume that W is a smooth 10-manifold with non-empty boundary

ow.

Theorem 2.1. The boundary of W is homeomorphic to S°.

Proof. This is due to Milnor, see [Mil59], and uses Morse-theory. Given an explicit description of the

gluing map, Milnor constructs a Morse function with only two critical points. O

Definition 2.2. The Kervaire manifold M is defined as My := W Ugy D0, Since OW =2 S?, we can
attach a cone to W to obtain the closed, 4-connected 10-manifold Mj.

The claim is that My does not admit any smooth structure. For this, we point to Theorem
which states that for any 4-connected, closed, smooth 10-manifold M, the Kervaire invariant satisfies
®(M) = 0. Clearly, the manifold My carries a CW-structure which comes from a CW-structure of

TS?. We will now compute the Kervaire invariant of M.

Theorem 2.3. The Kervaire invariant ®(My) of My is 1.

Proof. We calculate the cohomology of M. Note that we are attaching a 10-cell D!? to W to obtain
My. Therefore, H*(My;Z/2) = H¥(W;Z/2) for 0 < k < 9. Since M is 4-connected, the only
interesting cohomology group is H®(My;Z/2). The two generators « and /3 are represented by the
two O-sections of the two copies of d : E — S° by Poincaré duality. Since they intersect transversally
in a single point, this forms a symplectic basis. Let a : S> — My be dual to .. This completely lies in
the smooth part given by W, hence we can form the normal bundle of the embedded sphere. This is
just given by d : E — S°. We consider the map P : My — Th(d) given by collapsing My \ E to the

basepoint.

Let U again be the space formed from S° by killing all homotopy groups of degree at least 9. We claim
that Th(d) ~ U9, As 19(S®) = Z/2, we only need to attach one 10-cell to obtain U1?. Of course,
the attaching map is given by the Whitehead-product [ss, s5] : S* — S° as this generates m9(S®). Th(d)
has only one 5-cell and one 10-cell. This comes from pulling back the characteristic maps D° — S°
and D° — S®. Since the cells are contractible, the pullback is a product, giving a 5-cell and a 10-cell.
As d: E — S® is non-trivial, the attaching map must be homotopic to the Whitehead-product, hence
Th(d) ~ U9,

Therefore, we get a map f : My — U by P : My — Th(d), identifying Th(d) ~ U1 and post-

composing with the inclusion i : U9 — U. We get the following commuting diagram.
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us ¢ c(us)

~

H(U; Z) —— H'(U;7,/2) w0
25 H®(Th(d); Z) —%— H'(Th(d); Z/2 0(25)

- £

H®(My; Z) —— H'O(My: Z,/2)

V-

J
a » o«

~—

Here, us generates H°(U;7Z) and uip generates H'9(U;7Z/2). Notice that f*(us) = a, and c(us) must
be a generator by definition of the Kervaire class. Namely, c(us) = [f(9e!?)] = [s, s] as the attaching
map is given by the Whitehead product. By the cofibration sequence

S —— 0 —— HOUW; 7/2) s HOUA9); 7,/2) —— HY (", SY;7Z/2) ——

we can see that i* sends the generator uig to a generator of H'°(Th(d);Z/2). By the isomorphism
on the right-hand side, f*(u19) = c(a) must generate H'°(My;Z/2) = Z/2. This argument can
be repeated for the second generator 3 of H®(My;Z/2), resulting in c(a) = ¢(8) = 1. Therefore,
B(Mp) = ca)e(B) = 1. m

Combining this result with Theorem [3.1] yields the following corollaries.

Corollary 2.4. The Kervaire manifold My does not admit any smooth structure.

Corollary 2.5. The boundary OW of W is homeomorphic to S but not diffeomorphic.

Proof. If it were, the Kervaire manifold M, would be smooth, as D0 is smooth. ]

3  VANISHING OF THE KERVAIRE INVARIANT

This section is devoted to the proof of the following theorem.

Theorem 3.1. Let M be a 4-connected, closed, smooth 10-manifold. Then its Kervaire-invariant
®(M) vanishes.

The proof consists of the following lemmata.

Lemma 3.2. Any 4-connected, closed, smooth 10-manifold admits a framing.

Proof. We follow [Ker60]. Let M be a 4-connected, closed, smooth 10-manifold. Let ¢ : M —
R0+ he an embedding, with n large. Since M is smooth, it admits a CW-structure. We will use
obstruction theory to show that the normal bundle v : M — SO(n) of M in R%*" is trivial. Since
74(SO(n)) = 0 and M is 4-connected, we get H**1(M; 1, (SO(n))) = 0 for 0 < k < 8. Therefore, the
only possibly non-trivial obstruction class to constructing a field of normal n-frames f,, is ¢(v, f,) €
H(M;7m9(SO(n))) = m9(SO(n)). In [KM58], this has been identified with the kernel of the Hopf-
Whitehead homomorphism Jy : m9(SO(n)) — m9(S). This is a monomorphism, hence the obstruction

class vanishes. This concludes the proof. O
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Lemma 3.3. The Kervaire invariant defines a homomorphism Qgrk — Z)2.

Proof. In [Bro69|, Browder shows that a framed 2k-dimensional manifold which is cobordant to the
empty set has vanishing Kervaire invariant. Let M and N be two framed 2k-manifolds. Using Mayer-
Vietoris, it is easy to see that H¥(M#N;7/2) = H*(M;Z/2) ® H*(N;Z/2). Picking a symplectic
basis for each summand gives a symplectic basis for H*(M#N;7/2). Using naturality of the Kervaire
form and the collapse maps M#N — M and M#N — N we get the following commutative diagram.

H*(M;2)2) —2—s HF(M#N;2/2) <2 — H¥(N;Z/2)

| | I

H?$(M;7Z/2) —— H*(M#N;7/2) +—— H?*(N;7Z/2)

We find that ®(M#N) = ®(M) + B(N). m

Using the Pontrjagin-Thom isomorphism QF — 7,(S), we have a homomorphism ® : 719(S) — Z/2
which kills all elements of odd order. It is therefore left to examine the homomorphism on the 2-

components.

Lemma 3.4. Pre-composition with the Hopf map n € m1(S) induces a surjection m9(S)2) — m10(S)(2)-

Proof. This can be easily seen by examining the Adams spectral sequence. The only groups that show
up in the 10-stem on the FEs-page of the Adams spectral sequence are the following. Let P be the
vi-periodicity element. Simply for degree reasons, Ph; and Ph% are permanent cycles, and no other

groups show up. O

Lemma 3.5. Let fon = a € mo(S) with B € my(S). By the Pontrjagin-Thom isomorphism, o is
represented by a homotopy 10-sphere %10,

Note that any homotopy 10-sphere is homeomorphic to S'°. This has been proven by Smale, [Sma61],

using the h-cobordism theorem.

Proof. This heavily uses early results in surgery theory. For details, see [Ker60]. Kervaire shows
that any framed 9-manifold M representing /3 is framed cobordant to a homotopy 9-sphere %° by
performing framed surgery. Therefore, « is represented by ¥9 x S'. Once again using framed surgery
theory, one can easily kill 71(X? x S') and obtains a framed cobordism to a homotopy 10-sphere
»10, O

Proof of Theorem 3.1 Combining the previous lemmata, since H k(x19,7/2) = 0, the Kervaire invari-

ant vanishes. O
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