The Kervaire Invariant and a non-smoothable manifold

Maximilian Hans

January 9, 2024

Abstract

Building on Milnor's work on the existence of exotic spheres in [Mil56], Kervaire constructed a manifold that does not admit any smooth structure. The obstruction is given by the Kervaire invariant which can be thought of as a refinement of the mod 2 intersection pairing on an evendimensional manifold. This short summary serves as a gentle introduction, following Kervaire's original paper [Ker60] and work of Kervaire and Milnor as published in [KM63]. As the theory has evolved since then, we try to give a more general perspective when it is reasonable, enriching the text.

1 DEFINITION OF THE KERVAIRE INVARIANT

The original definition is due to Kervaire as found in [Ker60]. Shortly after its publication, Kervaire and Milnor generalised this definition, which is the one we will focus on for now.

Let M be a closed, (k-1)-connected, 2k-manifold that admits a CW-structure. Since M is simplyconnected, it is orientable. By Poincaré duality, the universal coefficient theorem and Hurewicz, it is easy to see that the cohomology of M is concentrated in degree 0, k and 2k. For any fixed $\alpha \in H^k(M;\mathbb{Z})$, we consider the problem of defining a map $f: M \to \mathbb{S}^k$ such that $f^*(s) = \alpha$, with sgenerating $H^k(\mathbb{S}^k;\mathbb{Z}) \cong \mathbb{Z}$. Such questions can be answered using obstruction theory. We recall the definition of the obstruction cochain associated to a lifting problem.

Let K be a CW-complex and Y a simple space. Here, simple means that the action of $\pi_1(Y)$ on $\pi_n(Y)$ is trivial. Suppose there exists a map $f: K^{(r)} \to Y$ which we would like to extend to the (r+1)-skeleton $K^{(r+1)}$.

Definition 1.1. Associated to any such lifting problem

as described above, is the obstruction cochain $c(f) \in C^{r+1}_{cell}(K; \pi_r(Y))$ defined by

$$c(f)(e^{r+1}) = [f(\partial e^{r+1})] \in \pi_r(Y).$$

Here, e^{r+1} is some (r+1)-cell of K. Thus, the element in $\pi_r(Y)$ can be viewed as the composition $S^r \xrightarrow{q} K^{(r)} \xrightarrow{f} Y$ with q the attaching map of the (r+1)-cell e^{r+1} . As homotopic gluing maps induce homotopy equivalent spaces, we deal with the set of homotopy classes $[S^r, Y]$. As Y was assumed to be simple, this agrees with the set of pointed homotopy classes $[S^r, Y]_* = \pi_r(Y)$. The main results due to standard obstruction theory are the following.

- (1) The map $f: K^{(r)} \to Y$ can be extended to $K^{(r+1)}$ if and only if c(f) = 0.
- (2) The obstruction cochain c(f) is a cocycle.

The second point makes sure that we can think of c(f) equivalently as an obstruction class $c(f) \in H^{r+1}(K; \pi_r(Y))$. There is the notion of a difference cochain which deals with the choice of different extensions to the (r+1)-skeleton of K. As we do not need it, we omit it here.

Back to the problem of defining a map $f: M \to \mathbb{S}^k$ that satisfies $f^*(s) = \alpha$ for a chosen cohomology class $\alpha \in H^k(M; \mathbb{Z})$. By cellular approximation, we can assume that f is trivial on $M^{(k-1)}$. This is backed up by the obstruction theory, as $\pi_r(\mathbb{S}^k)$ vanishes for $r \leq k-1$. As f is assumed to be trivial on $M^{(k-1)}$, any choice of extension on the k-skeleton factors through $M^{(k)}/M^{(k-1)} \cong \bigvee_{I_k} \mathbb{S}^k$. Hence, $f: M^{(k)} \to \mathbb{S}^k$ is entirely characterised by the mapping degree on each sphere. Let $\tilde{\alpha}$ be some cocycle representing the cohomology class α . For a given k-cell e^k , we define

$$f(e^k) \coloneqq \tilde{\alpha}(e^k) \cdot s.$$

Note that $\tilde{\alpha}(e^k) \in \mathbb{Z}$ is the corresponding mapping degree of the map from the sphere obtained by collapsing ∂e^k to \mathbb{S}^k . This is given by the factorisation $f: M^{(k)} \to M^{(k)}/M^{(k-1)} \to \mathbb{S}^k$. The obstruction to extend this map to $M^{(k+1)}$ is $c(f) \in C^{k+1}_{\text{cell}}(M; \pi_k(\mathbb{S}^k))$. We calculate

$$c(f)(e^{k+1}) = [f(\partial e^{k+1})] = [\tilde{\alpha}(\partial e^{k+1}) \cdot s] = [\delta \tilde{\alpha}(e^{k+1}) \cdot s] = 0$$

as $\tilde{\alpha}$ is a cocycle representing the chosen cohomology class $\alpha \in H^k(M; \mathbb{Z})$. Suppose we can extend the map f to all of M. Running through the definition of cellular cohomology, it is easy to see that the condition $f^*(s) = \alpha$ is indeed satisfied. The remaining cohomology groups of M vanish until degree 2k. Hence, the final obstruction cocycle lies in $C^{2k}_{cell}(M; \pi_{2k-1}(\mathbb{S}^k))$. Equivalently, we can consider the obstruction class in $H^{2k}(M; \pi_{2k-1}(\mathbb{S}^k))$.

Definition 1.2. The Kervaire class $c(\alpha)$ of M is defined to be this final obstruction class. The Kervaire form is the associated map $c: H^k(M; \mathbb{Z}) \to H^{2k}(M; \pi_{2k-1}(\mathbb{S}^k))$.

Lemma 1.3. The Kervaire form c is natural. Namely, if $g: M \to M'$ is a map between manifolds satisfying the necessary conditions, the following square commutes.

$$\begin{array}{c|c} H^k(M;\mathbb{Z}) & \xleftarrow{g^*} & H^k(M';\mathbb{Z}) \\ c & & \downarrow^c \\ H^{2k}(M;\pi_{2k-1}(\mathbb{S}^k)) & \xleftarrow{g^*} & H^{2k}(M';\pi_{2k-1}(\mathbb{S}^k)) \end{array}$$

This immediately implies that the Kervaire form does not depend on the chosen CW-structure.

Lemma 1.4. The Kervaire form satisfies $c(\alpha + \beta) = c(\alpha) + c(\beta) + [s,s](\alpha \smile \beta)$. In the case of $\pi_{2k-1}(\mathbb{S}^k)$ being a field, as the cup-product pairing is bilinear, this implies that the Kervaire form is a quadratic form.

Proof. Let U be the space obtained from \mathbb{S}^k by killing all homotopy groups of degree at least 2k - 1. Even though U is not a manifold, it makes sense to talk about its Kervaire class as all the needed properties are fulfilled. Indeed, U is (k - 1)-connected and its cohomology groups $H^r(U; \mathbb{Z})$ vanishes for $k + 1 \leq r \leq 2k - 1$. These assumptions hold for the space $U \times U$ as well. This gives rise to the following two forms.

- (1) $c: H^k(U; \mathbb{Z}) \to H^{2k}(U; \pi_{2k-1}(\mathbb{S}^k))$
- (2) $c: H^k(U \times U; \mathbb{Z}) \to H^{2k}(U \times U; \pi_{2k-1}(\mathbb{S}^k))$

We have $H^k(U;\mathbb{Z}) \cong H^k(\mathbb{S}^k;\mathbb{Z}) \cong \mathbb{Z}$, let u be a generator of $H^k(U;\mathbb{Z})$. Furthermore, by the Kuenneth formula, we have $H^k(U \times U;\mathbb{Z}) \cong H^k(U;\mathbb{Z}) \oplus H^k(U;\mathbb{Z})$ and $H^{2k}(U \times U;\pi_{2k-1}(\mathbb{S}^k)) \cong H^{2k}(U;\pi_{2k-1}(\mathbb{S}^k)) \oplus H^{2k}(U;\pi_{2k-1}(\mathbb{S}^k)) \oplus H^k(U;\pi_{2k-1}(\mathbb{S}^k)) \otimes H^k(U;\pi_{2k-1}(\mathbb{S}^k))$. Using this splitting, we get that

$$c(u \otimes 1 + 1 \otimes u) = a \otimes 1 + 1 \otimes b + \gamma(u \otimes u)$$

for a and b in $H^{2k}(U; \pi_{2k-1}(\mathbb{S}^k))$ and $\gamma \in \pi_{2k-1}(\mathbb{S}^k)$ a coefficient. We claim that a = c(u) = b. For this, we consider the inclusion $U \times e^0 \hookrightarrow U \times U$ and apply naturality of c.

Considering the inclusion $e^0 \times U \hookrightarrow U \times U$ yields b = c(u). It is left to evaluate the coefficient $\gamma \in \pi_{2k-1}(\mathbb{S}^k)$. We claim that γ is given by the Whitehead product class [s, s]. Consider the inclusion $\mathbb{S}^k \times \mathbb{S}^k \hookrightarrow U \times U$. The splitting of $H^{2k}(U \times U; \pi_{2k-1}(\mathbb{S}^k))$ in the Kuenneth formula comes from a splitting on the (2k)-skeleton of $U \times U$. The embedded $\mathbb{S}^k \times \mathbb{S}^k$ contributes to the factor $H^k(U; \pi_{2k-1}(\mathbb{S}^k)) \otimes H^k(U; \pi_{2k-1}(\mathbb{S}^k))$. Applying naturality yields the following commutative diagram.

Note that $c(s \otimes 1 + 1 \otimes s)$ is the obstruction class associated to the problem of defining a map $f: \mathbb{S}^k \times \mathbb{S}^k \to \mathbb{S}^k$ such that $f^*(s) = s \otimes 1 + 1 \otimes s$. Applying Hurewicz, this can be rephrased as f satisfying $f \circ i_1 = s$ and $f \circ i_2 = s$. Here, s is represents the identity map $s: \mathbb{S}^k \to \mathbb{S}^k$ as it generates $\pi_k(\mathbb{S}^k) \cong H^k(\mathbb{S}^k)$. We claim that [s, s] = 0 if and only if such a map f exists, hence concluding that $\gamma = [s, s]$. Consider the following diagram.

The composition of the upper row is the Whitehead product, the square is the CW-pushout diagram associated to $\mathbb{S}^k \times \mathbb{S}^k$.

- (1) Suppose [s, s] = 0. Therefore, the composition $(s \lor s) \circ q : \mathbb{S}^{2k-1} \to \mathbb{S}^k$ is homotopically trivial, and it extends to a map $\tilde{f} : \mathbb{D}^{2k} \to \mathbb{S}^k$. Applying the universal property of the pushout to the map $s \lor s : \mathbb{S}^k \lor \mathbb{S}^k \to \mathbb{S}^k$ yields the existence of the desired map $f : \mathbb{S}^k \times \mathbb{S}^k \to \mathbb{S}^k$, satisfying the necessary conditions.
- (2) Suppose such a map $f : \mathbb{S}^k \times \mathbb{S}^k \to \mathbb{S}^k$ exists. Then $s \vee s = F \circ (i_1 \vee i_2)$ and $(s \vee s) \circ q = F \circ (i_1 \vee i_2) \circ q$. Since $(i_1 \vee i_2) \circ q = Q \circ j$ and \mathbb{D}^{2k} is contractible, the composition $(i_1 \vee i_2) \circ q : \mathbb{S}^{2k-1} \to \mathbb{S}^k \times \mathbb{S}^k$ is homotopically trivial. Thus, [s, s] = 0.

Together, we have shown that $c(u \otimes 1 + 1 \otimes u) = c(u) \otimes 1 + 1 \otimes c(u) + [s, s](u \otimes u)$. Notice that $u \otimes u = (u \otimes 1) \smile (1 \otimes u)$. Consider two cohomology classes α and β in $H^k(M; \mathbb{Z})$. Since $\pi_{2k-1}(U) = 0$, the higher obstruction classes vanish, and we can define two maps $g_{\alpha} : M \to U$ and $g_{\beta} : M \to U$ such that $g_{\alpha}^*(u) = \alpha$ and $g^*(u) = \beta$. Let us define $g : M \to U \times U$ as (g_{α}, g_{β}) . It is clear that $g^*(u \otimes 1) = \alpha$ and $g^*(1 \otimes u) = \beta$. Using naturality of the Kervaire form, we have

$$\begin{split} c(\alpha + \beta) &= c(g^*(u \otimes 1 + 1 \otimes u)) \\ &= g^*(c(u \otimes 1 + 1 \otimes u)) \\ &= g^*(c(u) \otimes 1 + 1 \otimes c(u) + [s, s]((u \otimes 1) \smile (1 \otimes u))) \\ &= g^*(c(u \otimes 1)) + g^*(c(1 \otimes u)) + [s, s]g^*((u \otimes 1) \smile (1 \otimes u)) \\ &= c(g^*(u \otimes 1)) + c(g^*(1 \otimes u)) + [s, s](g^*((u \otimes 1)) \smile g^*((1 \otimes u))) \\ &= c(\alpha) + c(\beta) + [s, s](\alpha \smile \beta). \end{split}$$

This concludes the proof.

So far, it is not clear why the Kervaire invariant should be $\mathbb{Z}/2$ -valued. In the case of k = 5, we have $\pi_9(\mathbb{S}^5) \cong \mathbb{Z}/2$. The Kervaire form $c: H^5(M; \mathbb{Z}) \to \mathbb{Z}/2$ induces a form $\tilde{c}: H^5(M; \mathbb{Z}/2) \to \mathbb{Z}/2$. Indeed, we have $c(2\alpha) = c(\alpha) + c(\alpha) + \alpha \cup \alpha = 0$. Furthermore, we have the following result.

Lemma 1.5. Let k be odd, M a closed, (k-1)-connected, framed 2k-manifold. An embedded k-sphere \mathbb{S}^k in M has trivial normal bundle if and only if its dual cohomology class $\alpha \in H^k(M; \mathbb{Z})$ satisfies $c(\alpha) = 0$.

Proof. Let $\nu : \mathbb{S}^k \to BSO(k)$ be the normal bundle of the embedded k-sphere in M and $N \subseteq M$ a tubular neighbourhood. By excision and the long exact sequence of pairs, $H^{2k}(Th(\nu); \pi_{2k-1}(\mathbb{S}^k)) \cong H^{2k}(M, M \setminus \dot{N}; \pi_{2k-1}(\mathbb{S}^k)) \cong H^{2k}(M; \pi_{2k-1}(\mathbb{S}^k))$. Naturality of c yields the commutativity of the following diagram.

Here, i_k generates $H^k(\text{Th}(\nu); \mathbb{Z})$ and $P: M \to \text{Th}(\nu)$ is the collapse-map. With a chosen isomorphism, we have $c(i_k) = c(\alpha) \in \pi_{2k-1}(\mathbb{S}^k)$. Therefore, the Kervaire class only depends on the embedded sphere.

	-	-	-	
- 1				
- 1				
- 1				

Since M is framed, ν is stably trivial, hence it lies in the kernel of the map

$$\pi_k(BSO(k)) \to \pi_k(BSO)$$

which, for k odd and $k \notin \{1,3,7\}$, is cyclic of order 2. Hence, in this case, the Kervaire form is $\mathbb{Z}/2$ -valued. The only non-trivial element is given by the tangent bundle $T\mathbb{S}^k$, which can be identified with the normal bundle of the diagonal $\Delta \subseteq \mathbb{S}^k \times \mathbb{S}^k$. Choosing an orientation on $\mathrm{Th}(\nu)$ and $\mathbb{S}^k \times \mathbb{S}^k$ corresponds to the choice of the fundamental class $[\mathrm{Th}(\nu)]$ and $[\mathbb{S}^k \times \mathbb{S}^k]$. Suppose ν is non-trivial, then it can be identified with the normal bundle of $\Delta \subseteq \mathbb{S}^k \times \mathbb{S}^k$. By previous results, we have

$$c(i_k)[\operatorname{Th}(\nu)] = c(s \otimes 1 + 1 \otimes s)[\mathbb{S}^k \times \mathbb{S}^k] = [s, s] \neq 0.$$

If ν is trivial, $c(i_k)$ clearly vanishes. This concludes the proof.

Similarly as discussed above, in the case of M being framed, the Kervaire form induces a form \tilde{c} : $H^k(M; \mathbb{Z}/2) \to \mathbb{Z}/2$ satisfying the analogue properties.

Definition 1.6. We define the Kervaire invariant $\Phi(M)$ to be the Arf-invariant of \tilde{c} . That is, given a symplectic basis $\{\alpha_i, \beta_i\}_{i=1}^n$ of $H^k(M; \mathbb{Z}/2), \Phi(M) \coloneqq \sum_{i=1}^n \tilde{c}(\alpha_i)\tilde{c}(\beta_i)$.

An alternative interpretation of the Kervaire invariant has been given by Browder, see [Bro69]. We recall the definition here. Let M be a closed, framed 2k-manifold. Then there is an embedding $i: M \hookrightarrow \mathbb{R}^{2k+r}$ such that the normal bundle ν of M admits a trivialisation. Notice that its Thom space $\operatorname{Th}(\nu)$ is then given by $\Sigma^r(M)$. Identifying \mathbb{S}^{2k+r} with $(\mathbb{R}^{2k+r})^+$, the one-point compactification, the Pontrjagin-Thom collapse map is given by $P: \mathbb{S}^{2k+r} \to \Sigma^r(M)$.

Definition 1.7. Let $\alpha \in H^k(M; \mathbb{Z}/2)$ represented by $\alpha : M \to K(\mathbb{Z}/2, k)$. Pre-composition with the Pontrjagin-Thom collapse map as above gives

$$\mathbb{S}^{2k+r} \xrightarrow{P} \Sigma^{r}(M) \xrightarrow{\Sigma^{r}(\alpha)} \Sigma^{r}(K(\mathbb{Z}/2), k)$$

defining an element in $\pi_{2k+r}(\Sigma^r(K(\mathbb{Z}/2,k)))$. As r can be chosen to be arbitrary large, we're dealing with homotopy groups of the suspension spectrum of $K(\mathbb{Z}/2,k)$, namely $\pi_{2k}(\Sigma^{\infty}(K(\mathbb{Z}/2,k))) \cong \mathbb{Z}/2$. The corresponding element is denoted as $\tilde{c}(\alpha)$, and this defines a quadratic form $\tilde{c}: H^k(M; \mathbb{Z}/2) \to \mathbb{Z}/2$. Its Arf-invariant is the Kervaire invariant.

This definition agrees with the one given by Kervaire on its common domain of definition. Namely, using framed surgery, we can assume that the manifold M is (k-1)-connected. We know that, in this case, the Kervaire invariant can be geometrically interpreted as a question about embedded spheres having trivial normal bundle ν in M. Let $\alpha \in H^k(M; \mathbb{Z}/2)$ and consider the normal bundle ν of the representing embedded sphere $\mathbb{S}^k \subseteq M$. Let i_5 be the generator of $H^k(\mathrm{Th}(\nu); \mathbb{Z}/2)$. The map $\alpha : M \to K(\mathbb{Z}/2, k)$ can be factored

$$M \xrightarrow{P} \operatorname{Th}(\nu) \xrightarrow{\tilde{\alpha}} K(\mathbb{Z}/2, k)$$

with $\tilde{\alpha}^*(\kappa) = i_5$, with κ being the generator of $H^k(K(\mathbb{Z}/2, k))$.

2 The Kervaire Manifold

We will focus on the construction of the Kervaire manifold, a manifold that does not admit any smooth structure. The obstruction to show this is going to be the Kervaire invariant. Consider the tangent

bundle $T\mathbb{S}^5$ of \mathbb{S}^5 , and its associated disk bundle which we will denote by $d: E \to \mathbb{S}^5$. Let $\mathbb{D}^5 \subseteq \mathbb{S}^5$ be embedded, such that $d|_{\mathbb{D}^5} \cong \mathbb{D}^5 \times \mathbb{D}^5$, meaning the disk bundle over \mathbb{D}^5 looks like a trivial bundle. This always exists and gives rise to a standard two-chart trivialisation of the tangent bundle of \mathbb{S}^5 , such that it is entirely characterised by the clutching map $S^4 \to \mathrm{SO}(5)$. Let $W := E \cup_{\mathbb{D}^5 \times \mathbb{D}^5} E$ such that the gluing map swaps the sphere- and bundle-coordinate. This is a standard plumbing construction. After smoothing corners, we may assume that W is a smooth 10-manifold with non-empty boundary ∂W .

Theorem 2.1. The boundary of W is homeomorphic to \mathbb{S}^9 .

Proof. This is due to Milnor, see [Mil59], and uses Morse-theory. Given an explicit description of the gluing map, Milnor constructs a Morse function with only two critical points. \Box

Definition 2.2. The Kervaire manifold M_0 is defined as $M_0 := W \cup_{\partial W} \mathbb{D}^{10}$. Since $\partial W \cong \mathbb{S}^9$, we can attach a cone to W to obtain the closed, 4-connected 10-manifold M_0 .

The claim is that M_0 does not admit any smooth structure. For this, we point to Theorem 3.1, which states that for any 4-connected, closed, smooth 10-manifold M, the Kervaire invariant satisfies $\Phi(M) = 0$. Clearly, the manifold M_0 carries a CW-structure which comes from a CW-structure of TS^5 . We will now compute the Kervaire invariant of M_0 .

Theorem 2.3. The Kervaire invariant $\Phi(M_0)$ of M_0 is 1.

Proof. We calculate the cohomology of M_0 . Note that we are attaching a 10-cell \mathbb{D}^{10} to W to obtain M_0 . Therefore, $H^k(M_0; \mathbb{Z}/2) \cong H^k(W; \mathbb{Z}/2)$ for $0 \le k \le 9$. Since M_0 is 4-connected, the only interesting cohomology group is $H^5(M_0; \mathbb{Z}/2)$. The two generators α and β are represented by the two 0-sections of the two copies of $d : E \to \mathbb{S}^5$ by Poincaré duality. Since they intersect transversally in a single point, this forms a symplectic basis. Let $a : \mathbb{S}^5 \to M_0$ be dual to α . This completely lies in the smooth part given by W, hence we can form the normal bundle of the embedded sphere. This is just given by $d : E \to \mathbb{S}^5$. We consider the map $P : M_0 \to \text{Th}(d)$ given by collapsing $M_0 \setminus \dot{E}$ to the basepoint.

Let U again be the space formed from \mathbb{S}^5 by killing all homotopy groups of degree at least 9. We claim that $\operatorname{Th}(d) \simeq U^{(10)}$. As $\pi_9(\mathbb{S}^5) \cong \mathbb{Z}/2$, we only need to attach one 10-cell to obtain $U^{(10)}$. Of course, the attaching map is given by the Whitehead-product $[s_5, s_5] : \mathbb{S}^9 \to \mathbb{S}^5$ as this generates $\pi_9(\mathbb{S}^5)$. Th(d)has only one 5-cell and one 10-cell. This comes from pulling back the characteristic maps $\mathbb{D}^0 \to \mathbb{S}^5$ and $\mathbb{D}^5 \to \mathbb{S}^5$. Since the cells are contractible, the pullback is a product, giving a 5-cell and a 10-cell. As $d : E \to \mathbb{S}^5$ is non-trivial, the attaching map must be homotopic to the Whitehead-product, hence $\operatorname{Th}(d) \simeq U^{(10)}$.

Therefore, we get a map $f: M_0 \to U$ by $P: M_0 \to \text{Th}(d)$, identifying $\text{Th}(d) \simeq U^{(10)}$ and postcomposing with the inclusion $i: U^{(10)} \hookrightarrow U$. We get the following commuting diagram.

Here, u_5 generates $H^5(U;\mathbb{Z})$ and u_{10} generates $H^{10}(U;\mathbb{Z}/2)$. Notice that $f^*(u_5) = \alpha$, and $c(u_5)$ must be a generator by definition of the Kervaire class. Namely, $c(u_5) = [f(\partial e^{10})] = [s, s]$ as the attaching map is given by the Whitehead product. By the cofibration sequence

$$\dots \longrightarrow 0 \longrightarrow H^{10}(U^{(11)}; \mathbb{Z}/2) \xrightarrow{i^*} H^{10}(U^{(10)}; \mathbb{Z}/2) \longrightarrow H^{11}(\bigvee_{i=1}^n \mathbb{S}^{11}; \mathbb{Z}/2) \longrightarrow \dots$$

we can see that i^* sends the generator u_{10} to a generator of $H^{10}(\operatorname{Th}(d); \mathbb{Z}/2)$. By the isomorphism on the right-hand side, $f^*(u_{10}) = c(\alpha)$ must generate $H^{10}(M_0; \mathbb{Z}/2) \cong \mathbb{Z}/2$. This argument can be repeated for the second generator β of $H^5(M_0; \mathbb{Z}/2)$, resulting in $c(\alpha) = c(\beta) = 1$. Therefore, $\Phi(M_0) = c(\alpha)c(\beta) = 1$.

Combining this result with Theorem 3.1 yields the following corollaries.

Corollary 2.4. The Kervaire manifold M_0 does not admit any smooth structure.

Corollary 2.5. The boundary ∂W of W is homeomorphic to \mathbb{S}^9 but not diffeomorphic.

Proof. If it were, the Kervaire manifold M_0 would be smooth, as \mathbb{D}^{10} is smooth.

3 VANISHING OF THE KERVAIRE INVARIANT

This section is devoted to the proof of the following theorem.

Theorem 3.1. Let M be a 4-connected, closed, smooth 10-manifold. Then its Kervaire-invariant $\Phi(M)$ vanishes.

The proof consists of the following lemmata.

Lemma 3.2. Any 4-connected, closed, smooth 10-manifold admits a framing.

Proof. We follow [Ker60]. Let M be a 4-connected, closed, smooth 10-manifold. Let $i : M \hookrightarrow \mathbb{R}^{10+n}$ be an embedding, with n large. Since M is smooth, it admits a CW-structure. We will use obstruction theory to show that the normal bundle $\nu : M \to \mathrm{SO}(n)$ of M in \mathbb{R}^{10+n} is trivial. Since $\pi_4(\mathrm{SO}(n)) = 0$ and M is 4-connected, we get $H^{k+1}(M; \pi_k(\mathrm{SO}(n))) = 0$ for $0 \le k \le 8$. Therefore, the only possibly non-trivial obstruction class to constructing a field of normal n-frames f_n is $c(\nu, f_n) \in H^{10}(M; \pi_9(\mathrm{SO}(n))) \cong \pi_9(\mathrm{SO}(n))$. In [KM58], this has been identified with the kernel of the Hopf-Whitehead homomorphism $J_9: \pi_9(\mathrm{SO}(n)) \to \pi_9(\mathbb{S})$. This is a monomorphism, hence the obstruction class vanishes. This concludes the proof.

Lemma 3.3. The Kervaire invariant defines a homomorphism $\Omega_{2k}^{\text{fr}} \to \mathbb{Z}/2$.

Proof. In [Bro69], Browder shows that a framed 2k-dimensional manifold which is cobordant to the empty set has vanishing Kervaire invariant. Let M and N be two framed 2k-manifolds. Using Mayer-Vietoris, it is easy to see that $H^k(M\#N;\mathbb{Z}/2) \cong H^k(M;\mathbb{Z}/2) \oplus H^k(N;\mathbb{Z}/2)$. Picking a symplectic basis for each summand gives a symplectic basis for $H^k(M\#N;\mathbb{Z}/2)$. Using naturality of the Kervaire form and the collapse maps $M\#N \to M$ and $M\#N \to N$ we get the following commutative diagram.

$$\begin{array}{cccc} H^{k}(M;\mathbb{Z}/2) & \xrightarrow{i_{1}} & H^{k}(M\#N;\mathbb{Z}/2) & \xleftarrow{i_{2}} & H^{k}(N;\mathbb{Z}/2) \\ c & \downarrow & & \downarrow c \\ H^{2k}(M;\mathbb{Z}/2) & \longrightarrow & H^{2k}(M\#N;\mathbb{Z}/2) & \longleftarrow & H^{2k}(N;\mathbb{Z}/2) \end{array}$$

We find that $\Phi(M \# N) = \Phi(M) + \Phi(N)$.

Using the Pontrjagin-Thom isomorphism $\Omega_*^{\text{fr}} \to \pi_*(\mathbb{S})$, we have a homomorphism $\Phi : \pi_{10}(\mathbb{S}) \to \mathbb{Z}/2$ which kills all elements of odd order. It is therefore left to examine the homomorphism on the 2components.

Lemma 3.4. Pre-composition with the Hopf map $\eta \in \pi_1(\mathbb{S})$ induces a surjection $\pi_9(\mathbb{S})_{(2)} \twoheadrightarrow \pi_{10}(\mathbb{S})_{(2)}$.

Proof. This can be easily seen by examining the Adams spectral sequence. The only groups that show up in the 10-stem on the E_2 -page of the Adams spectral sequence are the following. Let P be the v_1 -periodicity element. Simply for degree reasons, Ph_1 and Ph_1^2 are permanent cycles, and no other groups show up.

Lemma 3.5. Let $\beta \circ \eta = \alpha \in \pi_{10}(\mathbb{S})$ with $\beta \in \pi_9(\mathbb{S})$. By the Pontrjagin-Thom isomorphism, α is represented by a homotopy 10-sphere Σ^{10} .

Note that any homotopy 10-sphere is homeomorphic to \mathbb{S}^{10} . This has been proven by Smale, [Sma61], using the *h*-cobordism theorem.

Proof. This heavily uses early results in surgery theory. For details, see [Ker60]. Kervaire shows that any framed 9-manifold M representing β is framed cobordant to a homotopy 9-sphere Σ^9 by performing framed surgery. Therefore, α is represented by $\Sigma^9 \times \mathbb{S}^1$. Once again using framed surgery theory, one can easily kill $\pi_1(\Sigma^9 \times \mathbb{S}^1)$ and obtains a framed cobordism to a homotopy 10-sphere Σ^{10} .

Proof of Theorem 3.1. Combining the previous lemmata, since $H^k(\Sigma^{10}; \mathbb{Z}/2) = 0$, the Kervaire invariant vanishes.

References

- [Mil56] John Milnor. "On Manifolds Homeomorphic to the 7-Sphere". In: Annals of Mathematics 64.2 (1956), pp. 399-405. ISSN: 0003486X. URL: http://www.jstor.org/stable/1969983.
- [KM58] Michel A. Kervaire and John W. Milnor. "Bernoulli numbers, homotopy groups, and a theorem of Rohlin". In: Proceedings of the Int. Congress of Math., Edinburgh (1958).

- [Mil59] John Milnor. "Differentiable Structures on Spheres". In: American Journal of Mathematics 81.4 (1959), pp. 962-972. ISSN: 00029327, 10806377. URL: http://www.jstor.org/stable/ 2372998.
- [Ker60] Michel A. Kervaire. "A manifold which does not admit any differentiable structure". In: Commentarii Mathematici Helvetici 34.1 (1960), pp. 257–270. DOI: 10.1007/BF02565940. URL: https://doi.org/10.1007/BF02565940.
- [Sma61] Stephen Smale. "Generalized Poincare's Conjecture in Dimensions Greater Than Four". In: Annals of Mathematics 74.2 (1961), pp. 391-406. ISSN: 0003486X. URL: http://www.jstor. org/stable/1970239 (visited on 01/11/2024).
- [KM63] Michel A. Kervaire and John W. Milnor. "Groups of Homotopy Spheres: I". In: Annals of Mathematics 77.3 (1963), pp. 504-537. ISSN: 0003486X. URL: http://www.jstor.org/ stable/1970128.
- [Bro69] William Browder. "The Kervaire Invariant of Framed Manifolds and its Generalization".
 In: Annals of Mathematics 90.1 (1969), pp. 157–186. ISSN: 0003486X. URL: http://www.jstor.org/stable/1970686.