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Abstract

The well-known basic relation between the Rokhlin invariant and homology cobordism will be

established. We will consider the group Θ3
Z of integer homoloy spheres up to homology cobordism.

Surprisingly, this group plays a key role in disproving the triangulation conjecture. We mostly

follow [Sav02].

1 Homology Cobordism

Definition 1.1 (H-cobordism). Let Σ1 and Σ2 be two integer homology spheres. We call Σ1 and

Σ2 homology cobordant, or H-cobordant, if there exists a smooth compact oriented manifold W of

dimension 4 such that ∂W = Σ1 ⨿ −Σ2 and the inclusions i1 : Σ1 ↪→ W , i2 : Σ2 ↪→ W induce an

isomorphism in homology. We can choose W to carry a spin structure.

Remark 1.2. This defines an equivalence relation on the set of all integer homology spheres.

Definition 1.3 (H-cobordism group). We denote Θ3
Z to be the set of all such equivalence classes.

Under the operation of connected sum, this defines an abelian group. For an integer homology sphere

Σ, we write JΣKH as its equivalence class in Θ3
Z.

We need to check whether that is truly the case. If we show that the connected sum gives Θ3
Z a group

structure, this group being abelian follows immediately. For that, we need some results.

Lemma 1.4. Let Σ be an integer homology sphere. Σ is H-cobordant to S3 if and only if there exists

a smooth 4-manifold W with boundary Σ and H•(W ;Z) ∼= H•(D4;Z).

Proof. Assume there exists such a 4-manifold W . We can smoothly embed a D4 in the interior of

W , i : D4 ↪→ W . Then W \ i(D4) is an H-cobordism of Σ and S3, as removing D4 leaves one more

boundary component, namely S3. Conversely, assume Σ and S3 are H-cobordant. Attaching D4 to

the boundary component S3 yields a 4-manifold W with ∂W = Σ and H•(W ;Z) ∼= H•(D4;Z). Figure
1 shows a sketch of the construction.
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Figure 1: Schematic picture of the construction above.

Proposition 1.5. Let Σ1,Σ2 be integer homology spheres. Then Σ1#Σ2 is an integer homology

sphere as well.

Proof. First of all, Σ1#Σ2 is again a closed connected and oriented 3-manifold. We consider the long

exact sequence of the pair (Σ1#Σ2,S2), with S2 obtained from the construction of the connected sum.

Note, that we have the following relation between homology of good pairs and reduced homology.

Hn(Σ1#Σ2, S2;Z) ∼= H̃n((Σ1#Σ2)/S2;Z)
∼= H̃n(Σ1 ∨ Σ2;Z) ∼= H̃n(Σ1;Z)⊕ H̃n(Σ2;Z)

The long exact sequence of pairs in homology now yields the following.

0 0 H3(Σ1#Σ2;Z) Z⊕ Z

Z H2(Σ1#Σ2;Z) 0

0 H1(Σ1#Σ2;Z) 0

Z H0(Σ1#Σ2;Z) 0 0

We can directly see that H0(Σ1#Σ2;Z) ∼= Z and H1(Σ1#Σ2;Z) ∼= 0. Using Poincaré Duality and the

Universal Coefficient Theorem for cohomology yields H2(Σ1#Σ2;Z) ∼= 0. As Σ1#Σ2 is oriented, we

already know that H3(Σ1#Σ2;Z) ∼= Z. One can also see it from the long exact sequence above, as

the short exact sequence splits.

0 → H3(Σ1#Σ2;Z) → Z⊕ Z → Z → 0

Proposition 1.6. Θ3
Z is an abelian group under the operation of connected sum.
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Proof. The neutral element is given by the sphere S3. This follows from the fact that S3#S3 ∼= S3,
hence JS3KH = 0. Inverses are given by reversing orientation. We need to show that for Σ, an integer

homology sphere, Σ# − Σ is homology cobordant to S3. Let W = Σ × [0, 1]. This defines an H-

cobordism W : Σ → Σ. Let γ : [0, 1] → W be a path connecting Σ × {0} and Σ × {1}. Consider

the thickening of γ, U(γ) ∼= D3 × γ ⊆ W . Note, that ∂U(γ) ∼= S2 × γ. This is closed, and W \ U̇(γ)

is closed as well. Here, U̇(γ) denotes U(γ) \ ∂U(γ). The boundary of W \ U̇(γ) now consists of

the connected sum of three components, namely Σ#(S2 × γ)# − Σ. A quick calculation yields the

following result.

Hn(W,W \ U̇(γ);Z) ∼= Hn(W/(W \ U̇(γ)), ∗;Z)
∼= H̃n(W/(W \ U̇(γ));Z) ∼= H̃n(S3 × [0, 1];Z)

The long exact sequence of pairs in homology now yields

· · · → Hn(W \ U̇(γ);Z) i∗−→ Hn(W ;Z) → H̃n(S3 × [0, 1];Z) → . . .

and as W is homotopy equivalent to Σ which has the same homology groups as S3, S3 × [0, 1] is

homotopy equivalent to S3, we obtain the following exact sequence.

0 H3(W \ U̇(γ);Z) Z Z

H2(W \ U̇(γ);Z) 0 0

H1(W \ U̇(γ);Z) 0 0

H0(W \ U̇(γ);Z)) Z 0 0

Going through the sequence, we can deduce Hn(W \ U̇(γ);Z) ∼= Hn(D4;Z). Hence by Lemma 1.4,

Σ#− Σ is H-cobordant to S3, and −JΣKH = J−ΣKH .

Proposition 1.7. The map Θ3
Z → Z/2Z given by the Rokhlin invariant is a surjective group homo-

morphism.

Proof. Let Σ1 and Σ2 be two integer homology spheres. Consider Σ1#Σ2. By Proposition 1.5, this

is again an integer homology sphere. Let W1 be a compact connected smooth spin 4-manifold with

boundary Σ1, W2 one which Σ2 bounds. Then W1♮W2 has boundary Σ1#Σ2 and its intersection form

is given by QW1 ⊕ QW2 . The signature is additive. Therefore, µ(Σ1#Σ2) = µ(Σ1) + µ(Σ2) mod 2.

We already know that µ(S3) = 0. Suppose Σ is an integer homology sphere that is H-cobordant to S3

via a compact smooth 4-manifold W with H•(W ;Z) ∼= H•(D4;Z). Its first homology group is trivial
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and the intersection form QW is empty, hence has even signature, and a spin structure. Attaching

D4 to the boundary component S3 yields the following.

µ(Σ) =
1

8
σ(W ) = 0 mod 2

Therefore, the Rokhlin invariant truly defines a group homomorphism Θ3
Z → Z/2Z. As µ(Σ(2, 3, 5)) =

1, it is a surjective mapping.

We will now give an argument on why the Poincaré homology sphere Σ(2, 3, 5) has infinite order in

Θ3
Z. For that, we need the following classical result by Donaldson.

Theorem 1.8. (Donaldson) Let W be a closed smooth oriented 4-manifold. If the intersection form

QW is positive or negative definite, then it can be diagonalised over Z to the identity matrix or its

additive inverse, respectively.

Proof. See [Don87] for a proof.

Proposition 1.9. Σ(2, 3, 5) has infinite order in Θ3
Z.

Proof. Recall that Σ(2, 3, 5) bounds a smooth closed oriented 4-manifold W with intersection form

E8. Consider #
n
i=1Σ(2, 3, 5) for n ≥ 1. This bounds the smooth closed oriented manifold 4-manifold

♮ni=1W . Its intersection form is isomorphic to
⊕n

i=1E8. Let us now assume that there exists a certain

k ∈ N such that J#k
i=1Σ(2, 3, 5)KH is trivial, meaning homology cobordant to S3. Let N denote this

cobordism and consider the manifold ♮ki=1W ∪Σ −N . This is a smooth closed oriented manifold of

dimension 4 with intersection form
⊕k

i=1E8 which is definite but not diagonalisable over Z. This

contradicts Donaldson’s Theorem, proving the claim.

This also implies that Z ≤ Θ3
Z. We now will state some interesting known properties of the homology

cobordism group. This will be held informally, proofs will be omitted.

Theorem 1.10 (Furuta, Fintushel and Stern). Z∞ ≤ Θ3
Z.

Proof. The classes JΣ(2, 3, 6n − 1)KH for n ≥ 1 given by Brieskorn homology spheres are linearly

independent. For example, see [Fur90].

2 A brief word on the Triangulation conjecture

In 2016, Manolescu published a paper in which he disproved the triangulation conjecture.

Conjecture 2.1 (Triangulation conjecture). Every topological manifold is triangulable.
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Up to dimension 3, this is indeed true. Casson and Freedman disproved the triangulation conjecture

in dimension 4, the E8-manifold for example is not triangulable. The following result is due to the

work of Matumoto, Galewski, and Stern.

Theorem 2.2 (Matumoto, Galewski and Stern). For dimension greater or equal than 5, every topolo-

gical manifold M with empty boundary is triangulable if and only if the following short exact sequence

splits.

0 → ker(µ) → Θ3
Z

µ−→ Z/2Z → 0

The map µ is given by the Rokhlin invariant.

Proof. See [GS80] and [Mat78].

This means that any such manifold is triangulable if and only if there exists an integer homology

sphere Σ such that µ(Σ) = 1 and Σ#Σ is homology cobordant to S3.

Theorem 2.3 (Manolescu). There is no 2-torsion in Θ3
Z.

Proof. See [Man16].

Hence, the short exact sequence in Theorem 2.2 does not split, and there do exist manifolds of

dimension greater or equal than 5 which are not triangulable, disproving the triangulation conjecture.

Regarding the group Θ3
Z, an interesting question to think about would be if it is torsion-free. To this

date, this is an open question.
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